

Command Reference

Copyright Notice

The Chestnut Pens 'CP' logo, this document and the Chestnut Pens Modelling Studio software are all copyright Chestnut Pens. www.chestnutpens.co.uk
'NISA' is a trademark of EMRC, Big Beaver, Troy, Michigan, USA. www.emrc.com
'MYSTRAN' is copyright Dr W Case, www.mystran.com
'Poser' was a trademark of e-frontier America Inc. 5615 Scotts Valley Drive, Suite 210, Scotts Valley, California, USA. www.e-frontier.com and is now owned by www.renderosity.com.
'DAZ| Studio’ and 'Bryce’ are trademarks of DAZ Productions, Inc. 12637 South 265 West \#300, Draper, Utah USA. www.daz3d.com

Contents

1. Introduction 4
2. Command Line Reference 5
2.2.1 Plotting Commands 8
2.2.2 Erase Commands 20
2.2.3 Colours 27
2.2.4 Views, Lights, Snaps \& Labels 28
2.2.5 Selection Commands 31
2.2.6 Deletion Commands. 43
2.2.7 Points 46
2.2.8 Lines. 49
2.2.9 Surfaces 53
2.2.10 Meshing Commands 57
2.2.11 Executive Commands 59
2.2.12 Nodes 61
2.2.13 Elements 65
2.2.14 Rigid Links 82
2.2.15 Analysis Titles 84
2.2.16 Materials 85
2.2.17 Laminations 86
2.2.18 Lamination Angles 87
2.2.19 Properties 88
2.2.20 Load Case Commands 89
2.2.21 Nodal Displacements 90
2.2.22 Pressures 93
2.2.23 Nodal Pressures. 96
2.2.24 Forces 99
2.2.25 Accelerations 102
2.2.26 Texture Mapping 103
2.2.27 Miscellaneous 104
2.2.28 Commands to fix bugs 106
3. Menu Command Reference. 107
3.2.1 File Menu 109
3.2.2 Edit Menu 111
3.2.3 View Menu 114
View| Plot Menu 114
View| Erase Menu 124
View| Zoom Menu 134
View| Angle Menu 134
View| Perspective Menu. 135
View| Display Options Menu 136
View| Colours Menu 139
View| Labels Menu 144
View| Light Source Menu 145
View| Layers Menu 146
View| Groups Menu 149
View| Status 152
3.2.4 Selection Menu 153
3.2.5 Geometry Menu 164
3.2.6 FE Model Menu 174
FE Model| Executive Commands 174
FE Model| Nodes 177
FE Model| Elements 180
FE Model| Rigid Links 194
FE Model| Analysis Title. 196
FE Model| Material 197
FE Model| Laminations 200
FE Model| Lamination Angles 203
FE Model| Properties 205
FE Model| Load Case 214
FE Model| Displacement Constraints 217
FE Model| Pressures 219
FE Model| Nodal Pressures 221
FE Model| Forces 223
FE Model| Accelerations 225
FE Model| Load Combiner 227
FE Model| Analysis Readiness Check 229
3.2.7 Mapping Menu 231
3.2.8 Window Menu 236
3.2.9 Help Menu 237
3.2.10 Pop-up menu over model Viewport 238
4. Interface Reference 240

1. Introduction

This document is the command reference intended to accompany the Chestnut Pens Modelling Studio program.

There are two principal sections to the document and a minor section. The principal sections are the command line command reference (section 2) and the menu command reference (section 3). The final section details the use of each button and active area on the Modelling Studio interface (section 4). Section 4 is, inevitably, a partial repeat of information contained in the Quick Start Guide.

Section 3 is probably the most useful as it covers the menu commands and all the dialogue windows that will be encountered. Also, there are some pictures, so it isn't quite so heavy going!

2. Command Line Reference

2.1 General Information

This section details every command that may be entered in the Modelling Studio command line. These commands are also applicable in the session file should it need to be edited.

Note: If all goes well, there should never be any need to resort to command line commands. So, don't worry if it all seems too much to learn and remember.

Throughout this section the minimum typed command is in BOLD CAPITALS. The command line is case insensitive, so there is no need to have any capitals anywhere.

Optional statements are in square brackets [].
Typed data entry in examples etc is in Courier New font.
As an example:-
NODe, ADD, nodenumber,lcs, $x, y, z[$, selected, visible,colour,layernumber]
This means that the command could be typed as

```
nod,add,1,1.5,1.1,0
```

Or as:-

```
Node,Add,1,1.5,1.1,0,0,1,16728345,1
```

Where a range is specified it's possible to use various delimiters. More than one integer may be specified separated by commas or slashes. Also a consecutive range may be indicated by a '-' or a 't'. In consecutive ranges make sure that the first number is smaller than the second. For example:-

Node, Delete, 2/4,1,7t9,15-19
Indicates that nodes $1,2,4,7,8,9,15,16,17,18 \& 19$ are to be deleted, whereas the following:-

```
Node, Delete,19-15
```

Is not acceptable.

Where a colour is specified, the number representing the colour can be calculated from the following RGB calculation. Assuming each channel can be represented by an integer in the range 0-255:-

$$
\text { Colournumber }=\text { red }+ \text { green * } 256+\text { blue * } 256^{2} .
$$

The following are the principal abbreviations that may be used:Abbreviation

Un-abbreviated form
Plo Plot
Era Erase
Sel Select
Unsel Unselect (for Deselect)
Rev Reverse (for Invert)
As Association
Del Delete
Col Colour
Boun Boundary Conditions
FE FE Model
Geo Geometry
Lab Label
Poi Point
Lin Line
Sur Surface
Nod Node
Ele Element
Rig Rigid Link
NDisp NDisplacement for Nodal Displacement
Pres Pressure
NPres NPressure for Nodal Pressure
NFor Force
BodyF BodyForce for Acceleration

2.2 Command List

The commands are broken down into the categories listed below. Where a command falls into more than one category, it is repeated in all applicable categories.
2.2.1 Plotting Commands 8
2.2.2 Erase Commands 20
2.2.3 Colours 27
2.2.4 Views, Lights, Snaps \& Labels 28
2.2.5 Selection Commands 31
2.2.6 Deletion Commands 43
2.2.7 Points 46
2.2.8 Lines 49
2.2.9 Surfaces 53
2.2.10 Meshing Commands 57
2.2.11 Executive Commands 59
2.2.12 Nodes 61
2.2.13 Elements 65
2.2.14 Rigid Links 82
2.2.15 Analysis Titles 84
2.2.16 Materials 85
2.2.17 Laminations 86
2.2.18 Lamination Angles 87
2.2.19 Properties 88
2.2.20 Load Case Commands 89
2.2.21 Nodal Displacements 90
2.2.22 Pressures 93
2.2.23 Nodal Pressures. 96
2.2.24 Forces 99
2.2.25 Accelerations 102
2.2.26 Texture Mapping 103
2.2.27 Miscellaneous 104
2.2.28 Commands to cure bugs 106

2.2.1 Plotting Commands

The following plotting commands may be entered.
PLOt
Plot currently visible model at a zoom factor of 1.0

PLOt,ALL

Plot all entities.
PLOt,BOUNdaryconditions,ALL
Plot All Nodal Displacements, Pressures, Nodal Pressures and Forces.
PLOt,BOUNdaryconditions,CASe,range
Plot All Nodal Displacements, Pressures, Nodal Pressures and Forces with load case within 'range'.
PLOt,FEmodel,ALL
Plot all FE Model Entities.
PLOt,GEOmetry,ALL
Plot all Points, Lines, Surfaces and Solids
PLOt,REFresh
Refresh the screen.

ERAse,BOUNdaryconditions,NONe

Plot All Nodal Displacements, Pressures, Nodal Pressures and Forces.

ERAse,ELEments,NONe

Plot all elements. Non-preferred alternative to 'ELEment,PLOt,ALL'

ERAse,FEmodel,NONe

Plot all FE Model Entities.
ERAse,GEOmetry,NONe
Plot all Points, Lines, Surfaces and Solids
ERAse,NODe,NONe
Plot all nodes. Non-preferred alternative to 'NODe,PLOt,ALL'

POInt,ERAse,NONe

Plot all points
POInt,PLOt,ALL
Plot all points
POInt, PLOt,ASsociation, LINe
Plot points by association with currently selected lines.
POInt,PLOt,ASsociation,SURface
Plot points by association with currently selected surfaces.

POInt,PLOt,SELected

Plot selected points. Should be redundant as all selected points should be visible.
POInt,PLOt,range
Plot points within 'range'.
POInt,VISible,ALL
Plot all points

POInt, VISible,ASsociation, LINe
Plot points by association with currently selected lines.
POInt,VISible,ASsociation,SURface
Plot points by association with currently selected surfaces.
POInt,VISible,SELected
Plot selected points. Should be redundant as all selected points should be visible.
POInt,VISible,range
Plot points within 'range'.

LINe,ERAse,NONe

Plot all lines.
LINe, PLOt,ALL
Plot all lines
LINe,PLOt,ASsociation,POInt
Plot all lines associated with currently selected points.
LINe, PLOt,ASsociation,SURface
Plot all lines associated with currently selected surfaces.
LINe,PLOt,SELected
Plot all selected lines. Should be redundant as all lines should be plotted as they are selected.
LINe, PLOt,range
Plot a range of lines.
LINe,VISible,ALL
Plot all lines
LINe,VISible,ASsociation, POInt
Plot all lines associated with currently selected points.
LINe, VISible, ASsociation, SURface
Plot all lines associated with currently selected surfaces.
LINe,VISible,SELected
Plot all selected lines. Should be redundant as all lines should be plotted as they are selected.
LINe, VISible,range
Plot a range of lines.
SURface,ERAse,NONe
Plot all surfaces.
SURface, PLOt,ALL
Plot all surfaces

SURface,PLOt,ASsociation,LINe

Plot surfaces by association with currently selected lines.
SURface,PLOt,ASsociation,POInt
Plot surfaces by association with currently selected points.
SURface,PLOt,SELected
Plot selected surfaces. This command should be redundant.

SURface,PLOt,range
Plot surfaces within 'range'.
SURface, VISible,ALL
Plot all surfaces
SURface,VISible,ASsociation,LINe
Plot surfaces by association with currently selected lines.
SURface,VISible,ASsociation,POInt
Plot surfaces by association with currently selected points.
SURface,VISible,SELected
Plot selected surfaces. This command should be redundant.
SURface,VISible,range
Plot surfaces within 'range'.
NODe,ERAse,NONe
Plot all nodes.
NODe,PLOt,ALL
Plot all nodes.
NODe,PLOt,ASsociation,ELEment
Plot all nodes associated with the currently selected Elements
NODe,PLOt,ASsociation,RIGidLink
Plot all nodes associated with the currently selected Rigid Links
NODe,PLOt,ASsociation,NDISPlacement
Plot all nodes associated with the currently selected Displacement Constraints
NODe,PLOt,ASsociation,PRESSure
Plot all nodes associated with the currently selected Pressures
NODe,PLOt,ASsociation,NPRESSure
Plot all nodes associated with the currently selected Nodal Pressures
NODe,PLOt,ASsociation,NFORce
Plot all nodes associated with the currently selected Forces
NODe,PLOt,SELected
Plots all selected nodes. This should be redundant as all nodes should be made visible as they are selected.
NODe,PLOt,range
Plots a range of nodes.
NODe,VISible,ALL
Plot all nodes.
NODe,VISible,ASsociation,ELEment
Plot all nodes associated with the currently selected Elements
NODe,VISible,ASsociation,RIGidLink
Plot all nodes associated with the currently selected Rigid Links
NODe,VISible,ASsociation,NDISPlacement
Plot all nodes associated with the currently selected Displacement Constraints

NODe,VISible, ASsociation, PRESSure
Plot all nodes associated with the currently selected Pressures
NODe,VISible,ASsociation,NPRESSure
Plot all nodes associated with the currently selected Nodal Pressures
NODe,VISible,ASsociation,NFORce
Plot all nodes associated with the currently selected Forces
NODe,VISible,SELected
Plots all selected nodes. This should be redundant as all nodes should be made visible as they are selected.
NODe,VISible,range
Plots a range of nodes.
ELEment,ERAse,NONe
Plot all elements
ELEment,PLOt,ALL
Plot all elements

ELEment,PLOt,ASsociation,NODe

Plot elements by association with selected nodes
ELEment,PLOt,ASsociation,NDISPlacements
Plot Elements by association with selected Nodal Displacements
ELEment,PLOt,ASsociation,NFORce
Plot Elements by association with selected Forces
ELEment,PLOt,ASsociation,NPRESSure
Plot Elements by association with selected Nodal Pressures
ELEment,PLOt,ASsociation,PRESSure
Plot Elements by association with selected Pressures
ELEment,PLOt,ASsociation,RIGidLink
Plot Elements by association with selected Rigid Links
ELEment,PLOt,FORMulation,range
Plot the elements by formulation. The value of the integers in range are:-
Formulation Description
1 Linear
2 Parabolic
3 Cubic
4 Mixed
ELEment,PLOt,MATerial,range
Plot the elements by material range.
ELEment,PLOt,NKTP,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-

> Type Description

1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid

10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer

ELEment,PLOt,NORDR,range
Plot the elements by Node Order range.
ELEment,PLOt,NSRL,range
Plot the elements by NSRL range.
ELEment,PLOt,PROPerty,range
Plot the elements by property range.
ELEment,PLOt,TYPE,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12
3D Beam Element
2D Beam Element
3D Spar Element
2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer
ELEment,PLOt,NONe
Erase all elements
ELEment,PLOt,SELected
Plot selected elements
ELEment,PLOt,range
Plot element range.
ELEment,VISible,ALL
Plot all elements
ELEment,VISible,ASsociation,NODe
Plot elements by association with selected nodes
ELEment,VISible,ASsociation,NDISPlacements
Plot Elements by association with selected Nodal Displacements

ELEment,VISible,ASsociation,NFORce
Plot Elements by association with selected Forces
ELEment, VISible,ASsociation,NPRESSure
Plot Elements by association with selected Nodal Pressures
ELEment, VISible,ASsociation, PRESSure
Plot Elements by association with selected Pressures
ELEment,VISible,ASsociation,RIGidLink
Plot Elements by association with selected Rigid Links
ELEment, VISible,FORMulation,range
Plot the elements by formulation. The value of the integers in range are:-

Formulation Description

1 Linear
2 Parabolic
3 Cubic
4 Mixed
ELEment, VISible,MATerial, range
Plot the elements by material range.
ELEment,VISible,NKTP,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,VISible,NORDR,range Plot the elements by Node Order range.
ELEment,VISible,NSRL,range
Plot the elements by NSRL range.
ELEment,VISible,PROPerty,range
Plot the elements by property range.
ELEment,VISible,TYPE,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,VISible,SELectedPlot selected elements
ELEment,VISible,range
Plot element range.
RIGidlink,ERAse,NONe
Plot All Rigid Links
RIGidlink,PLOt,ALL
Plot all rigid links
RIGidlink,PLOt,SELected
Plot all selected rigid links
RIGidlink,PLOt,range
Plot all rigid links in 'range'
RIGidlink,VISible,ALL
Plot all rigid links
RIGidlink,VISible,SELected
Plot all selected rigid links
RIGidlink,VISible,range
Plot all rigid links in 'range'
NDISp,ERAse,NONe
Plot all nodal displacements
NDISp,PLOt,ALL
Plot all nodal displacements
NDISp,PLOt,ASSociation,NODe
Plot nodal displacements by association with currently selected nodes.
NDISp,PLOt,ASSociation, ELEment
Plot nodal displacements by association with currently selected elements.
NDISp,PLOt,CASe,range
Plot all nodal displacements with load case within 'range'.
NDISp,PLOt,INDividual, nodenumber,casenumber
Plot nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,PLOt,NODe,range
Plot nodal displacements with nodenumber within 'range'.

NDISp,VISible,ALL

Plot all nodal displacements

NDISp,VISible,ASSociation,NODe

Plot nodal displacements by association with currently selected nodes.
NDISp,VISible,ASSociation, ELEment
Plot nodal displacements by association with currently selected elements.
NDISp,VISible,CASe,range
Plot all nodal displacements with load case within 'range'.
NDISp,VISible,INDividual,nodenumber,casenumber
Plot nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,VISible,NODe,range
Plot nodal displacements with nodenumber within 'range'.

PRESsure,ERAse,NONe

Plot all nodal pressure forces

PRESsure,PLOt,ALL

Plot all pressure forces
PRESsure,PLOt,ASSociation,NODe
Plot pressure forces by association with currently selected nodes.
PRESsure,PLOt,ASSociation, ELEment
Plot pressure forces by association with currently selected elements.
PRESsure,PLOt,CASe,range
Plot all pressure forces with load case within 'range'.
PRESsure,PLOt,INDividual,elementnumber,facenumber,casenumber
Plot nodal pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,PLOt,ELEment,range
Plot pressure forces with element number within 'range'.
PRESsure, VISible,ALL
Plot all pressure forces
PRESsure,VISible,ASSociation,NODe
Plot pressures by association with currently selected nodes.
PRESsure,VISible,ASSociation, ELEment
Plot pressure forces by association with currently selected elements.
PRESsure,VISible,CASe,range
Plot all pressure forces with load case within 'range'.
PRESsure,VISible,INDividual,elementnumber,facenumber,casenumber
Plot nodal pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,VISible,NODe,range
Plot pressure forces with nodenumber within 'range'.
NPRESsure,ERAse,NONe
Plot all nodal pressure forces

NPRESsure,PLOt,ALL

Plot all nodal pressure forces
NPRESsure, PLOt,ASSociation,NODe
Plot nodal pressure forces by association with currently selected nodes.
NPRESsure, PLOt,ASSociation, ELEment
Plot nodal pressure forces by association with currently selected elements.
NPRESsure,PLOt,CASe,range
Plot all nodal pressure forces with load case within 'range'.
NPRESsure,PLOt,INDividual, nodenumber,casenumber
Plot nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,PLOt,NODe,range
Plot nodal pressure forces with nodenumber within 'range'.
NPRESsure,VISible,ALL
Plot all nodal pressure forces
NPRESsure, VISible,ASSociation,NODe
Plot nodal pressure forces by association with currently selected nodes.
NPRESsure,VISible,ASSociation, ELEment
Plot nodal pressure forces by association with currently selected elements.
NPRESsure,VISible,CASe,range
Plot all nodal pressure forces with load case within 'range'.
NPRESsure,VISible,INDividual, nodenumber,casenumber
Plot nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,VISible,NODe,range
Plot nodal pressure forces with nodenumber within 'range'.

NFORce,ERAse,NONe

Plot all forces

NFORce,PLOt,ALL

Plot all forces
NFORce,PLOt,ASSociation,NODe
Plot forces by association with currently selected nodes.
NFORce,PLOt,ASSociation, ELEment
Plot forces by association with currently selected elements.
NFORce,PLOt,CASe,range
Plot all forces with load case within 'range'.
NFORce,PLOt,INDividual,nodenumber,casenumber
Plot force on node 'nodenumber' for load case 'casenumber'.
NFORce,PLOt,NODe,range
Plot forces with nodenumber within 'range'.
NFORce,VISible,ALL
Plot all forces

NFORce, VISible,ASSociation,NODe

Plot forces by association with currently selected nodes.
NFORce,VISible,ASSociation, ELEment
Plot forces by association with currently selected elements.
NFORce,VISible,CASe,range
Plot all forces with load case within 'range'.
NFORce,VISible,INDividual,nodenumber,casenumber
Plot force on node 'nodenumber' for load case 'casenumber'.
NFORce,VISible,NODe,range
Plot forces with nodenumber within 'range'.
GROup,PLOt,groupname
Plot elements in group 'groupname'.
GROup,VISible,groupname
Plot elements in group 'groupname'.
LAYer,PLOt,layername
Plot all entities on layer 'layername'.
LAYer,VISible,layername
Plot all entities on layer 'layername'.

2.2.2 Erase Commands

The following erase commands may be entered. When an entity is erased it is retained in the model (it is not deleted), the entity is not plotted. This has the effect of reducing extraneous clutter when examining a part of the model.

ERAse,ALL

Erase all visible entities.
ERAse,BOUNdaryconditions,ALL
Erase all Nodal Displacements, Pressures, Nodal Pressures and Forces.
ERAse,BOUNdaryconditions,CASe,range
Erase all Nodal Displacements, Pressures, Nodal Pressures and Forces with load case number in 'range'.
ERAse,ELEments,ALL
Erase all elements. Non-preferred alternative to 'ELEment,ERAse, ALL'
ERAse,ELEments,SELected
Select all elements. Non-preferred alternative to 'ELEment,ERAse,SELected'
ERAse,FEmodel,ALL
Erase all FE model Entities, leaving only points, lines, surfaces and solids visible.
ERAse,FEmodel,NONe
Plot all FE Model Entities.
ERAse,GEOmetry,ALL
Erase all Points, Lines, Surfaces and Solids
ERAse,NODe,ALL
Erase all nodes. Non-preferred alternative to 'NODe,ERAse,ALL'
ERAse,NODe,SELected
Erase selected nodes. Non-preferred alternative to 'NODe,ERAse,SELected'

ERAse,SELected

Erase selected entities.
PLOt,BOUNdaryconditions,NONe
Erase all Nodal Displacements, Pressures, Nodal Pressures and Forces.

PLOt,FEmodel,NONe

Erase all FE model Entities, leaving only points, lines, surfaces and solids visible.
PLOt,GEOmetry,NONe
Erase all Points, Lines, Surfaces and Solids
POInt,ERAse,ALL
Erase all points
POInt,ERAse,ASsociation,LINe
Erase points by association with currently selected lines.
POInt,ERAse,ASsociation,SURface
Erase points by association with currently selected surfaces.
POInt,ERAse,SELected
Erase selected points.

POInt,ERAse,range
Erase all points within 'range'.
POInt, PLOt,NONe
Erase all points.
POInt, VISible,NONe
Erase all points.
LINe,ERA,ALL
Erase all lines.
LINe,ERAse,ASsociation,POInt
Erase lines associate with currently selected points.
LINe,ERAse,ASsociation,SURface
Erase lines associated with currently selected surfaces.
LINe,ERAse,SELected
Erase selected lines.
LINe,ERAse,range
Erase a range of lines.
LINe, PLOt,NONe
Erase all lines
LINe, VISible,NONe
Erase all lines
SURface,ERAse,ALL
Erase all surfaces.
SURface,ERAse,ASsociation,LINe
Erase surfaces associated with currently selected lines.
SURface,ERAse,ASsociation,POInt
Erase surfaces associated with currently selected points.
SURface,ERAse,SELected
Erase selected surfaces.
SURface,ERAse,range
Erase all surfaces within 'range'.
SURface,PLOt,NONe
Erase all surfaces.
SURface,VISible,NONe
Erase all surfaces.
NODe,ERAse,ALL
Erase all nodes.
NODe,ERAse,ASsociation,ELEment
Erase all nodes associated with the currently selected Elements.
NODe,ERAse,ASsociation,RIGidLink
Erase all nodes associated with the currently selected Rigid Links

NODe,ERAse,ASsociation,NDISPlacement
Erase all nodes associated with the currently selected Displacement Constraints
NODe,ERAse,ASsociation,PRESSure
Erase all nodes associated with the currently selected Pressures
NODe,ERAse,ASsociation,NPRESSure
Erase all nodes associated with the currently selected Nodal Pressures
NODe,ERAse,ASsociation,NFORce
Erase all nodes associated with the currently selected Forces
NODe,ERAse,SELected
Erase selected nodes.
NODe,ERAse,range
Erases a range of node numbers.
NODe,PLOt,NONe
Erase all nodes
NODe,VISible,NONe
Erase all nodes
ELEment,ERAse,ALL
Erase all elements
ELEment,ERAse,ASsociation,NODe
Erase elements associated with selected nodes.
ELEment,ERAse,ASsociation,NDISPlacements
Erase Elements by association with selected Nodal Displacements
ELEment,ERAse,ASsociation,NFORce
Erase Elements by association with selected Forces
ELEment,ERAse,ASsociation,NPRESSure
Erase t Elements by association with selected Nodal Pressures
ELEment,ERAse,ASsociation,PRESSure
Erase Elements by association with selected Pressures
ELEment,ERAse,ASsociation,RIGidLink
Erase elements by association with selected Rigid Links
ELEment,ERAse,SELected
Erase selected elements
ELEment,ERAse,FORMulation,range
Erase the elements by formulation. The value of the integers in range are:-
Formulation Description
1 Linear

2 Parabolic
3 Cubic
4 Mixed
ELEment,ERAse,MATerial,range
Erase all elements with material number specified in 'range'
ELEment,ERAse,NORDR,range
Erase all elements with Node Order number specified in 'range'

ELEment,ERAse,NSRL,range

Erase all elements with NSRL number specified in 'range'
ELEment,ERAse,PROPerty,range
Erase all elements with property number specified in 'range'

ELEment,ERAse,TYPE,range

Erase all elements with element type number specified in 'range'
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
43 3D Gap
45 3D Cable
46 3D Straight Pipe
47 3D Elbow
48 3D Translational Damper
49 2D Gap/Friction
50 3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer
ELEment,ERAse,range
Erase all elements within 'range'

[^0]PRESsure,ERAse,CASe,range
Erase all pressure forces with load case numbers within 'range'
PRESsure,ERAse,INDividual,elementnumber,facenumber,casenumber
Erase pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,ERAse,ELEment,range
Erase all pressures on elements with element numbers within 'range'.
PRESsure,ERAse,SELected
Erase selected pressure forces
PRESsure,PLOt,NONe
Erase all pressure forces
PRESsure, VISible,NONe
Erase all pressure forces
NPRESsure,ERAse,ALL
Erase all nodal pressure forces
NPRESsure,ERAse,ASSociation,NODe
Erase all nodal pressure forces associated with currently selected nodes. Any selected forces are deselected as they are erased.

NPRESsure,ERAse,ASSociation, ELEment
Erase all nodal pressure forces associated with currently selected elements. Any selected forces are deselected as they are erased.

NPRESsure,ERAse,CASe,range
Erase all nodal pressure forces with load case numbers within 'range'
NPRESsure,ERAse,INDividual,nodenumber,casenumber
Erase nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,ERAse,NODe,range
Erase all forces on nodes with nodenumbers within 'range'.
NPRESsure,ERAse,SELected
Erase selected nodal pressure forces
NPRESsure,PLOt,NONe
Erase all nodal pressure forces
NPRESsure,VISible,NONe
Erase all nodal pressure forces
NFORce,ERAse,ALL
Erase all forces
NFORce,ERAse,ASSociation,NODe
Erase all forces associated with currently selected nodes. Any selected forces are deselected as they are erased.

NFORce,ERAse,ASSociation, ELEment
Erase all forces associated with currently selected elements. Any selected forces are deselected as they are erased.

NFORce,ERAse,CASe,range
Erase all forces with load case numbers within 'range'

NFORce,ERAse,INDividual, nodenumber,casenumber
Erase force on node 'nodenumber' for load case 'casenumber'.
NFORce,ERAse,NODe,range
Erase all forces on nodes with nodenumbers within 'range'.
NFORce,ERAse,SELected
Erase selected forces
NFORce,PLOt,NONe
Erase all forces
NFORce,VISible,NONe
Erase all forces
GROup,ERAse,groupname
Erase elements in 'groupname'
LAYer,ERAse,layername
Erase all entities on layer 'layername'.

2.2.3 Colours

The following commands relate to the colours of the model.
SNAP,COLour,number
Sets the colour of the snaps to 'number'
POInt,COLour
Opens a dialogue box to specify the colours of points.
POInt,COLour,pointcolour,pointselectedcolour
Sets the colour of points when not selected and when selected.
LINe,COLour
Opens a dialogue box to set the colours of lines.
LINe,COLour,linecolour,lineselectedcolour
Sets the colour of lines and the colour of lines when they are selected.

SURface,COLour

Opens a dialogue box to set the colours of surfaces.
SURface,COLour,surfacecolour,surfaceoutlinecolour
Sets the colours of surfaces and selected surfaces.

SURface,FILLtype,DEpth

Change the surface fill colour to depth shaded.

SURface,FILLtype,SHaded

Change the surface fill colour to infinite light shaded.

SURface,FILLtype,ID

Set the surface fill colour to be by ID number.
NODe,COLour
Set node colour by opening dialogue box.
NODe,COLour,ALL, colour
Change the colour of all nodes to 'colour'.
ELEment, COLour
Set the colour of the selected elements

ELEment,COLOURLIST

Opens a dialogue window to set the sixteen colours used to differentiate between materials, groups, layers etc.

ELEment,COLOURLIST, listnumber,colour
Sets colour list 'listnumber' to 'colour'.
ELEment,COLour,SELected
Set the colour of the selected elements
ELEement,COLour,elementnumber,colour
Set the colour of element number 'elementnumber' to 'colour'

ELEment,FILIcolour

Set the element fill colour to be by face number. Seemed a good idea at the time.

RIGidlink,COLour

Opens a dialogue box to specify the rigid link colour.

2.2.4 Views, Lights, Snaps and Labels

The following commands relate to changing the view, lights, snaps or labels.
LABels,state
Sets all labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,ALL,state
Sets all labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,POInt,state
Sets point labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,LINe,state
Sets line labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,SURfaces,state
Sets surface labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,SOLids,state
Sets solids labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,NODes,state
Sets node labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,ELEments,state
Sets element labels to 'state', where 'state' is 'ON' or 'OFF'.
LABels,RIGidlinks,state
Sets rigid link labels to 'state', where 'state' is 'ON' or 'OFF'.

LIGht,BOTTOMLEFT

Sets the light position for infinite light shading of elements to the bottom left of the view.

LIGht,BOTTOMCENTRE

Sets the light position for infinite light shading of elements to the bottom centre of the view.

LIGht,BOTTOMRIGHT

Sets the light position for infinite light shading of elements to the bottom right of the view.

LIGht,CENTRELEFT

Sets the light position for infinite light shading of elements to the centre left of the view.

LIGht,CENTRECENTRE

Sets the light position for infinite light shading of elements to the centre of the view.

LIGht,CENTRERIGHT

Sets the light position for infinite light shading of elements to the centre right of the view.

LIGht,TOPLEFT

Sets the light position for infinite light shading of elements to the top left of the view.

LIGht,TOPCENTRE

Sets the light position for infinite light shading of elements to the top centre of the view.

LIGht,TOPRIGHT

Sets the light position for infinite light shading of elements to the top right of the view.
PAN, x, y
Pan the view x pixels to the right and y pixels down.

PERspective,None

View the model with no perspective
PERspective,Wide
View the model with perspective simulating a wide angle lens.
PERspective,Standard
View the model with perspective simulating a standard lens.
PERspective,Telescopic
View the model with perspective simulating a telescopic lens.

SNAP,POint,state

Set the screen snapping for points to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,LINe,End,state
Set the screen snapping for line ends to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,LINe,Middle,state
Set the screen snapping for line mid-points to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,LINe,Nearest,state
Set the screen snapping for line nearest points to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,LINe,Perpendicular,state
Set the screen snapping for line perpendicular points to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,SURface,CENtroid,state
Set the screen snapping for surface centroids to 'state', where 'state' is 'ON' or 'OFF'.

SNAP,NODe,state

Set the screen snapping for nodes to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,ELEment,state
Set the screen snapping for element centroids to 'state', where 'state' is 'ON' or 'OFF'.
SNAP,COLour, number
Sets the colour of the snaps to 'number'
View,Front
View the model from the front.
View,BAck
View the model from the back.
View,Left
View the model from the left.
View,Right
View the model from the right.
View,Top
View the model from the top.
View,BOttom
View the model from the bottom.
View,ISO1
View the model from the ISO1 view.

View,ISO2

View the model from the ISO2 view.

View,ISO3

View the model from the ISO3 view.

View,ISO4

View the model from the ISO4 view.
View,Userdefined
Open a dialogue window to enter user defined view.
View,Userdefined, anglex,angley,anglez
User defined view with rotations 'anglex,angley,anglez' about the X, Y and Z axes.
Zoom,ALL
View entire visible model.
Zoom,ARea,left,bottom,right,top
Zoom to rectangle defined by pixel co-ordinates 'left,bottom,right,top'

Zoom,Extents

View entire visible model.
Zoom,In, x,y
Zoom in to model, expanding all dimensions by 15% centred about x and y in pixel co-ordinates from the top left of the viewport. X is horizontal, Y is down.

Zoom,Out, x, y
Zoom out from model, shrinking all dimensions by 15% centred about x and y in pixel co-ordinates from the top left of the viewport. X is horizontal, Y is down.

Zoom,Previous

Zoom to previous view.

2.2.5 Selection Commands

The following commands relate to Selecting/Deselecting entities.

SELect, ALL

Select all entities.
SELect,BOUNdaryconditions,ALL
Select all Displacement constraints, Pressures, Nodal Pressures and Forces.
SELect,BOUNdaryconditions,CASe,range
Select all Displacement constraints, Pressures, Nodal Pressures and Forces with load case number within 'range'.

SELect,BOUNdaryconditions,NONe
Deselect all Displacement constraints, Pressures, Nodal Pressures and Forces.
SELect,BOUNdaryconditions,REVerse
Invert selection of all Displacement constraints, Pressures, Nodal Pressures and Forces.

SELect,FEmodel,ALL

Select all Nodes, Elements, Rigid Links, Displacement constraints, Pressures, Nodal Pressures and Forces.

SELect,FEmodel,NONe

Deselect all Nodes, Elements, Rigid Links, Displacement constraints, Pressures, Nodal Pressures and Forces.

SELect,FLAG,state

Set the 'DeSelect After Operation' flag to 'state', where 'state' is 'ON' or 'OFF'.

SELect,GEOmetry,ALL

Select all points, lines and surfaces.

SELect,GEOmetry,NONe

Deselect all points, lines and surfaces.
SELection, GROup,groupname
Select elements in group 'groupname'.
SELection,LAYer,layername
Select all entities in layer 'layername'

SELect, NONe

Deselect all entities.
SELection,NOT
Invert selection of all entities.
SELection,REVerse
Invert selection of all entities.
POInt,SELect,ALL
Select all points.
POInt,SELect,ASsociation,LINe
Select points by association with currently selected lines.
POInt,SELect, ASsociation,SURface
Select points by association with currently selected surfaces.
POInt,SELect,NONe
Deselect all points

POInt,SELect,NOT
Invert point selection.
POInt,SELect,REVerse
Invert point selection.
POInt,SELect,range
Select all points within 'range'.
POInt,UNSELect,ALL
Deselect all points.
POInt,UNSELect,ASsociation,LINe
Deselect points by association with currently selected lines.
POInt, UNSELect,ASsociation,SURface
Deselect points by association with currently selected surfaces.

POInt,UNSELect,NONe

Select all points
POInt,UNSELect,NOT
Invert point selection.
POInt,UNSELect,REVerse
Invert point selection.
POInt,UNSELect,range
Deselect all points within 'range'.
LINe,SELect,ALL
Select all lines.
LINe,SELect,ASsociation, POInt
Select lines by association with currently selected points.
LINe,SELect,ASsociation,SURface
Select lines by association with currently selected surfaces.

LINe,SELect,NONe

Deselect all lines.
LINe,SELect,NOT
Invert line selection.
LINe,SELect,REVerse
Invert line selection.
LINe,SELect,range
Select lines that fall within 'range'.
LINe,UNSELect,ALL
Deselect all lines
LINe, UNSELect, ASsociation, POInt
Deselect lines by association with currently selected points.
LINe,UNSELect,ASsociation,SURface
Deselect lines by association with currently selected surfaces.

LINe,UNSELect,NONe

Select all lines.
LINe,UNSELect,NOT
Invert line selection.
LINe,UNSELect,REVerse Invert line selection.

LINe,UNSELect,range
Deselect a range of lines.
SURface,SELect,ALL
Select all surfaces.
SURface,SELect, ASsociation,LINe
Select surfaces by association with currently selected lines.
SURface,SELect,ASsociation,POInt
Select surfaces by association with currently selected points.

SURface,SELect,NONe

Deselect all surfaces.
SURface,SELect,NOT
Invert surface selection.
SURface,SELect,REVerse
Invert surface selection.
SURface,SELect,range
Select surfaces within 'range'.
SURface,UNSELect,ALL
Deselect all surfaces.
SURface,UNSELect,ASsociation,LINe
Deselect surfaces by association with currently selected lines.
SURface, UNSELect,ASsociation, POInt
Deselect surfaces by association with currently selected points.

SURface,UNSELect,NONe

Select all surfaces.
SURface,UNSELect,NOT
Invert surface selection.
SURface,UNSELect,REVerse
Invert surface selection.
SURface,UNSELect,range
Deselect surfaces within 'range'.

NODe,SELect,ALL

Select all nodes. If nodes are invisible prior to being selected, they are made visible.
NODe,SELect,ASsociation,ELEment
Select all nodes associated with the currently selected Elements. If nodes are invisible prior to being selected, they are made visible.

NODe,SELect,ASsociation,RIGidLink
Select all nodes associated with the currently selected Rigid Links. If nodes are invisible prior to being selected, they are made visible.

NODe,SELect,ASsociation,NDISPlacement
Select all nodes associated with the currently selected Displacement Constraints
NODe,SELect,ASsociation,PRESSure
Select all nodes associated with the currently selected Pressures
NODe,SELect,ASsociation,NPRESSure
Select all nodes associated with the currently selected Nodal Pressures
NODe,SELect,ASsociation,NFORce
Select all nodes associated with the currently selected Forces
NODe,SELected,FALse,nodenumber
Deselect node 'nodenumber'
NODe,SELect,NONe
Deselect all nodes.
NODe,SELect,NOT
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,REVerse'

NODe,SELect,REVerse
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,NOT'

NODe,SELect,range
Selects a range of node numbers. If nodes are invisible prior to being selected, they are made visible.
NODe,SELected,TRUe,nodenumber
Select node 'nodenumber'. If node is invisible prior to being selected, it is made visible.

NODe, UNSELect,ALL

Deselect all nodes.
NODe, UNSELect,ASsociation, ELEment
Deselect all nodes associated with the currently selected Elements. If nodes are invisible prior to being selected, they are made visible.

NODe,UNSELect,ASsociation,RIGidLink
Deselect all nodes associated with the currently selected Rigid Links. If nodes are invisible prior to being selected, they are made visible.

NODe,UNSELect, ASsociation,NDISPlacement
Deselect all nodes associated with the currently selected Displacement Constraints
NODe,UNSELect,ASsociation,PRESSure
Deselect all nodes associated with the currently selected Pressures
NODe, UNSELect,ASsociation,NPRESSure
Deselect all nodes associated with the currently selected Nodal Pressures
NODe,UNSELect,ASsociation,NFORce
Deselect all nodes associated with the currently selected Forces

NODe,UNSELect,NONe

Select all nodes.

NODe,UNSELect,NOT

Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,UNSELect,REVerse'

NODe,UNSELect,REVerse
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,UNSELect,NOT'

NODe,UNSELect,range
Deselects a range of node numbers.

ELEment,SELect,ALL

Select all elements. Any selected elements initially invisible are plotted.

ELEment,SELect,ASsociation,NODe

Select elements associated with selected nodes. Any selected elements initially invisible are plotted.

ELEment,SELect,ASsociation,NDISPlacements

Select Elements by association with selected Nodal Displacements

ELEment,SELect,ASsociation,NFORce

Select Elements by association with selected Forces
ELEment,SELect,ASsociation,NPRESSure
Select Elements by association with selected Nodal Pressures
ELEment,SELect,ASsociation,PRESSure
Select Elements by association with selected Pressures
ELEment,SELect,ASsociation,RIGidLink
Select elements associated with selected Rigid Links. Any selected elements initially invisible are plotted.

ELEment,SELect,FORMulation,range

Select the elements by formulation. The value of the integers in range are:-
Formulation Description
1 Linear
2 Parabolic
3 Cubic
4 Mixed
Any selected elements initially invisible are plotted.

ELEment, SELect, DUPLIcates

Select all duplicated elements - whether forward or reverse nodal definitions.
ELEment,SELect,MATerial,range
Select all elements with material in 'range'. Any selected elements initially invisible are plotted.
ELEment,SELect,NKTP,range
Select all elements with element type in 'range'. Any selected elements initially invisible are plotted.
The element type is the NISA NKTP number and is as below:-

Type	Description
1	2D Plane Stress Element
2	2D Plane Stress Element
3	Axisymmetric Solid Element
4	3D Thick Solid Element
5	3D Thick Shell Element
7	3D Laminated Solid
9	3D Hybrid Solid
10	3D Membrane
11	3D Tapered Beam

3D Beam Element
2D Beam Element
3D Spar Element
2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,SELect,NONe
Deselect all elements
ELEment,SELect,NORDR,range
Select all elements with Node Order in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELection,NOT

Invert the selection of the element. Any selected elements initially invisible are plotted.

ELEment,SELect,NSRL,range

Select all elements with NSRL in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELect,PROPerty,range

Select all elements with property in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELection,REVerse

Invert the selection of the element. Any selected elements initially invisible are plotted.

ELEment,SELect,TYPE,range

Select all elements with element type in 'range'. Any selected elements initially invisible are plotted. The element type is the NISA NKTP number and is as below:-
Type Description
2D Plane Stress Element
2D Plane Stress Element
Axisymmetric Solid Element
3D Thick Solid Element
3D Thick Shell Element
3D Laminated Solid
3D Hybrid Solid
3D Membrane
3D Tapered Beam
3D Beam Element
2D Beam Element
3D Spar Element
2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,SELect,range
Select all elements in 'range'. Any selected elements initially invisible are plotted.
ELEment,SELection,SHApe, range
Invert the selection of the element. Any selected elements initially invisible are plotted.
The element shape is as below:-
Shape Description
1 Point Element
2 Line Element
3 Axisymmetric Shell Element
4 Axisymmetric Solid Element
5 Heat Transfer Element
6 Planar Element
$7 \quad$ Shell Element
8 Solid Element
ELEment,UNSELect,ALL
Deselect all elements
ELEment,UNSELect,ASsociation,NODe
Deselect elements associated with selected nodes. Any selected elements initially invisible are plotted.
ELEment,UNSELect,ASsociation,NDISPlacements
Deselect Elements by association with selected Nodal Displacements
ELEment,UNSELect,ASsociation,NFORce
Deselect Elements by association with selected Forces
ELEment,UNSELect,ASsociation,NPRESSure
Deselect Elements by association with selected Nodal Pressures
ELEment,UNSELect,ASsociation,PRESSure
Deselect Elements by association with selected Pressures
ELEment,UNSELect,ASsociation,RIGidLink
Deselect elements associated with selected Rigid Links. Any selected elements initially invisible are plotted.
ELEment,UNSELect,FORMulation,range
Deselect the elements by formulation. The value of the integers in range are:-
Formulation Description 1 Linear
3 Cubic
4 Mixed
ELEment,UNSELect,MATerial,range
Deselect the elements by material range.
ELEment,UNSELect,NONe
Select all elements.
ELEment,UNSELect,REVerse/NOT
Invert element selection. Any selected elements initially invisible are plotted.
ELEment,UNSELect,NORDR,range
Deselect the elements by Node Order range.
ELEment,UNSELect,NSRL,range
Deselect the elements by nsrl range.
ELEment,UNSELect,PROPerty,range
Deselect the elements by property range.
ELEment,UNSELect,TYPE/NKTP,range
Deselect the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Elemen
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
2D Beam Element
3D Spar Element
2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,UNSELect,range
Deselect the elements by range.
RIGidlink,SELect,ALL
Select all rigid links.
RIGidlink,SELect,NONe
Deselect all Rigid Links
RIGidlink,SELect, NOT
Invert Rigid Link Selection
RIGidlink,SELect,REVerse
Invert Rigid Link Selection
RIGidlink,SELect,range
Select all rigid links within 'range'

RIGidlink,UNSELect,ALL

Deselect all rigid links
RIGidlink,UNSELect,NONe
Select all rigid links
RIGidlink,UNSELect, NOT
Invert rigid link selection
RIGidlink,UNSELect,REVerse
Invert rigid link selection
RIGidlink,UNSELect,range
Deselect all rigid links within 'range'

NDISp,SELect,ALL

Select all nodal displacements
NDISp,SELect,ASSociation,NODe
Select nodal displacements by association with currently selected nodes.
NDISp,SELect,ASSociation,ELEment
Select nodal displacements by association with currently selected elements.
NDISp,SELect,CASe,range
Select all nodal displacements with load case within 'range'.
NDISp,SELect,INDividual,nodenumber,casenumber
Select nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,SELect,NODe,range
Select nodal displacements with nodenumber within 'range'.
NDISp,SELect,NONe
Deselect all nodal displacements
NDISp,SELect,NOT
Invert selection of nodal displacements
NDISp,SELect,REVerse
Invert selection of nodal displacements
NDISp,UNSELect,INDividual, nodenumber,casenumber
Deselect nodal displacement on node 'nodenumber' for load case 'casenumber'.

PRESsure,SELect,ALL

Select all pressure forces

PRESsure,SELect,ASSociation,NODe

Select pressure forces by association with currently selected nodes.
PRESsure,SELect,ASSociation,ELEment
Select pressure forces by association with currently selected elements.
PRESsure,SELect,CASe,range
Select all pressure forces with load case within 'range'.
PRESsure,SELect,INDividual,elementnumber,facenumber,casenumber
Select pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.

PRESsure,SELect,ELEment,range
Select pressure forces with element number within 'range'.

PRESsure,SELect,NONe

Deselect all pressure forces
PRESsure,SELect,NOT
Invert selection of pressure forces
PRESsure,SELect,REVerse
Invert selection of pressure forces
PRESsure,UNSELect,INDividual,elementnumber,facenumber,casenumber
Deselect nodal pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.

NPRESsure,SELect,ALL

Select all nodal pressure forces
NPRESsure,SELect,ASSociation,NODe
Select nodal pressure forces by association with currently selected nodes.
NPRESsure,SELect,ASSociation,ELEment
Select nodal pressure forces by association with currently selected elements.
NPRESsure,SELect,CASe,range
Select all nodal pressure forces with load case within 'range'.
NPRESsure,SELect,INDividual,nodenumber,casenumber
Select nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,SELect,NODe,range
Select nodal pressure forces with nodenumber within 'range'.
NPRESsure,SELect,NONe
Deselect all nodal pressure forces
NPRESsure,SELect,NOT
Invert selection of nodal pressure forces
NPRESsure,SELect,REVerse
Invert selection of nodal pressure forces
NPRESsure,UNSELect,INDividual, nodenumber,casenumber
Deselect nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NFORce,SELect,ALL
Select all forces
NFORce,SELect,ASSociation,NODe
Select forces by association with currently selected nodes.
NFORce,SELect,ASSociation,ELEment
Select forces by association with currently selected elements.
NFORce,SELect,CASe,range
Select all forces with load case within 'range'.
NFORce,SELect,INDividual, nodenumber,casenumber
Select force on node 'nodenumber' for load case 'casenumber'.

NFORce,SELect,NODe,range
Select forces with nodenumber within 'range'.

NFORce,SELect,NONe

Deselect all forces
NFORce,SELect,NOT
Invert selection of forces
NFORce,SELect,REVerse
Invert selection of forces
NFORce, UNSELect,INDividual,nodenumber,casenumber
Deselect force on node 'nodenumber' for load case 'casenumber'.

GROup,DESELect,groupname
Deselect elements in group 'groupname'.
GROup,SELect,groupname
Select elements in group 'groupname'.
GROup,UNSELect,groupname
Deselect elements in group 'groupname'.
LAYer,DESELect,layername
Deselect all entities on layer 'layername'.
LAYer,SELect,layername
Select all entities on layer 'layername'
LAYer,UNSELect,layername
Deselect all entities on layer 'layername'.

2.2.6 Deletion Commands

The following commands relate to Deleting entities.
DELete,SELected
Delete Selected Entities. Where one entity is referenced by another that is not deleted, then it will not be deleted. Eg if a point is to be deleted, but it is used by a line that will remain, the point is not deleted.

POInt,DELete,ALL
Delete all points.
POInt,DELete,INACTive
Delete all points not referenced by other entities.
POInt,DELete,SELected
Delete selected points
POInt,DELete,range
Delete range of points.

LINe,DELete,ALL

Delete all lines.
LINe,DELete,INACTive
Delete all lines not used to define surfaces.
LINe,DELete,SELected
Delete selected lines
LINe,DEL,range
Delete range of lines.
SURface,DELete,ALL
Delete all surfaces.
SURface,DELete,INACTive
Delete all surfaces not referenced by solids.
SURface,DELete,SELected
Delete selected surfaces.
SURface,DELete,range
Delete range of surfaces.
NODe,DELete,ALL
Delete all nodes.
NODe,DELete,INACTive
Delete all inactive nodes.
NODe,DELete,SELected
Deletes all selected nodes.
NODe,DELete,range
Deletes a range of node numbers.
ELEment,DELete,ALL
Delete all elements
ELEment,DELete,SELected
Delete Selected Elements

ELEment,DELete,range
Delete a range of elements
ELEment,TEXturemap,DELete,ALL
Delete texture mapping on all elements
ELEment,TEXturemap,DELete,FACe,elementnumber,facenumber, Delete the texture mapping on element 'elementnumber', face 'facenumber'

ELEment,TEXturemap,DELete,SELected
Delete texture mapping on the selected elements.
RIGidlink,DELete,ALL
Delete all Rigid Links.
RIGidlink,DELete,SELected
Delete selected Rigid Links
RIGidlink,DELete,range
Delete a range of Rigid Links
MATErial,DELete,ALL
Delete all materials
MATErial,DELete,range
Delete all materials with material number within range.
LAMInation, DELete, ALL
Delete all laminates
LAMInation, DELete,range
Delete all laminates with laminate number within 'range'.
LAMAngle,DELete,ALL
Delete all lamination angles
LAMAngle,DELete,range
Delete all lamination angle sets within 'range'.
PROPerty,DELete,ALL
Delete all properties.
PROPerty,DELete,range
Delete all properties with property number within 'range'

LCTItle,DELete,ALL

Delete all load case titles.
LCTItle,DELete,range
Delete all load case titles with load case number within 'range'.

LOADcase,DELete,ALL

Delete all load cases
LOADcase,DELete,range
Delete all load cases with load case number within 'range'.
NDISp,DELete,ALL
Delete all nodal displacements

NDISp,DELete,SELected
Delete selected nodal displacements
NDISp,DELete,nodenumber,casenumber
Delete nodal displacement on node 'nodenumber' for load case 'casenumber'.

PRESsure,DELete,ALL

Delete all pressure forces
PRESsure,DELete,SELected
Delete selected pressure forces
PRESsure,DELete,elementnumber,casenumber,facenumber
Delete nodal pressure force on element 'elementnumber' for load case 'casenumber'. The pressure deleted is the one applied to face 'facenumber'.

NPRESsure,DELete,ALL

Delete all nodal pressure forces
NPRESsure,DELete,SELected
Delete selected nodal pressure forces
NPRESsure,DELete,nodenumber,casenumber
Delete nodal pressure force on node 'nodenumber' for load case 'casenumber'.

NFORce,DELete,ALL

Delete all forces
NFORce,DELete,SELected
Delete selected forces
NFORce,DELete,nodenumber,casenumber
Delete force on node 'nodenumber' for load case 'casenumber'.
BODYForce,DELete,ALL
Delete all accelerations.
BODYForce,DELete,range
Delete all accelerations with load case number within 'range'
TEXTURENodes,DELete, nodenumber
Delete texture node 'nodenumber'

2.2.7 Points

The following commands relate to points.
POInt,ADD
Starts interactive addition of points
POInt, ADD, pointnumber,layernumber, x, y, z
Adds point 'pointnumber' at x, y, z to layer number 'layernumber'.
POInt, COLour
Opens a dialogue box to specify the colours of points.
POInt,COLour, pointcolour,pointselectedcolour
Sets the colour of points when not selected and when selected.
POInt,DELete,ALL
Delete all points.
POInt,DELete,INACTive
Delete all points not referenced by other entities.
POInt,DELete,SELected
Delete selected points
POInt,DELete,range
Delete range of points.
POInt,ELIMinateduplicates
Eliminate duplicated points from those points currently selected. Equivalent to 'Merge Points'.
POInt,ERAse,ALL
Erase all points
POInt,ERAse,ASsociation,LINe
Erase points by association with currently selected lines.
POInt,ERAse,ASsociation,SURface
Erase points by association with currently selected surfaces.
POInt,ERAse,NONe
Plot all points
POInt,ERAse,SELected
Erase selected points.
POInt,ERAse,range
Erase all points within 'range'.
POInt,FINd,range
Plot all points within 'range' on top of the current screen \& temporarily label them. If they are currently invisible, they are made visible.

POInt,INSPect
Start interactive inspection of points.
POInt,MESh, ALL
Mesh all points with point elements according to the current 'Point Element Mesh Settings'.
POInt,MESh,SELected
Mesh selected points with point elements according to the current 'Point Element Mesh Settings'.

POInt,MESh,SETup,elementtype, propertynumber
Set up the 'Point Element Mesh Settings'. The property number is 'propertynumber', while the element type must be one of the following:-
$25=2 \mathrm{D}$ Concentrated Mass
$26=3 D$ Concentrated Mass
$27=2 D$ General Mass
$28=3 D$ General Mass
$29=2 D$ General Mass with Inertia
$30=3 D$ General Mass with Inertia
POInt,MESh,range
Mesh all points within 'range' with point elements according to the current 'Point Element Mesh Settings'.
POInt,MOVe,pointnumber, new x, new y,new z
Change the co-ordinates of point 'pointnumber' to 'new x, new y, new z '.

POInt, PLOt,ALL

Plot all points

POInt,PLOt,ASsociation,LINe

Plot points by association with currently selected lines.
POInt,PLOt,ASsociation,SURface
Plot points by association with currently selected surfaces.

POInt,PLOt,NONe

Erase all points.

POInt,PLOt,SELected

Plot selected points. Should be redundant as all selected points should be visible.
POInt,PLOt,range
Plot points within 'range'.
POInt,SELect,ALL
Select all points.
POInt,SELect,ASsociation,LINe
Select points by association with currently selected lines.

POInt,SELect, ASsociation,SURface

Select points by association with currently selected surfaces.

POInt,SELect,NONe

Deselect all points
POInt,SELect,NOT
Invert point selection.
POInt,SELect,REVerse
Invert point selection.
POInt,SELect,VISible
Select all visible points.
POInt,SELect,range
Select all points within 'range'.

POInt,UNSELect,ALL

Deselect all points.

POInt,UNSELect,ASsociation,LINe

Deselect points by association with currently selected lines.
POInt, UNSELect,ASsociation, SURface
Deselect points by association with currently selected surfaces.

POInt,UNSELect,NONe

Select all points
POInt,UNSELect,NOT
Invert point selection.
POInt,UNSELect,REVerse
Invert point selection.
POInt,UNSELect,range
Deselect all points within 'range'.
POInt, VISible,ALL
Plot all points
POInt,VISible,ASsociation,LINe
Plot points by association with currently selected lines.
POInt,VISible,ASsociation,SURface
Plot points by association with currently selected surfaces.
POInt, VISible,NONe
Erase all points.
POInt,VISible,SELected
Plot selected points. Should be redundant as all selected points should be visible.
POInt,VISible,range
Plot points within 'range'.

2.2.8 Lines

The following commands relate to lines.

LINe,ADD

Starts interactive addition of lines
LINe,ADD,linenumber,layernumber,startpoint,endpoint
Add a new line with number 'linenumber' on 'layernumber' between point number 'startpoint' and point number 'endpoint'.

LINe,BREak, number of segments
Breaks the selected lines into 'number of segments' and hides the original line. The original line is not deleted.
LINe,CALculate,MIDPOINTS
Calculates midpoints on all lines. This is a remedial function to help, in the event of a bug, if lines have their mid points calculated in the wrong place.

LINe,COLour
Opens a dialogue box to set the colours of lines.
LINe,COLour,linecolour,lineselectedcolour
Sets the colour of lines and the colour of lines when they are selected.

LINe,DELete,ALL

Delete all lines.
LINe, DELete, INACTive
Delete all lines not used to define surfaces.
LINe,DELete,SELected
Delete selected lines
LINe,DEL,range
Delete range of lines.
LINe,ELIMinateduplicates
Eliminate duplicated lines from those lines currently selected.

LINe,ERA,ALL

Erase all lines.
LINe,ERAse,ASsociation,POInt
Erase lines associated with currently selected points.
LINe,ERAse,ASsociation,SURface
Erase lines associated with currently selected surfaces.

LINe,ERAse,NONe

Plot all lines.
LINe,ERAse,SELected
Erase selected lines.
LINe,ERAse,range
Erase a range of lines.
LINe, FINd , range
Plot all lines within 'range' on top of the current screen \& temporarily label them. If the lines are currently invisible, they are made visible.

LINe,INSPect

Starts the interactive line inspection routine

LINe,MESh,ALL

Mesh all lines with line elements according to the current 'Line Element Mesh Settings'.

LINe,MESh,SELected

Mesh selected lines with line elements according to the current 'Line Element Mesh Settings'
LINe,MESh,SETup,elementtype,propertynumber,materialnumber,numberofelements
Specify the current 'Line Element Mesh Settings'. The new property number is 'propertynumber', the new material number is 'materialnumber'. The number of elements along each line is specified by 'numberofelements.
The element type must be one of the following:-

11	$=$	3-D Tapered Beam
12	$=$	3-D Beam
13	$=$	2-D Beam
14	$=$	3-D Spar
15	$=$	2-D Spar
17	$=$	3-D Translational Spring
18	$=$	2-D Translational Spring
21	$=$	3-D Torsional Spring
22	$=$	2-D Torsional Spring
38	$=$	3-D General Spring
39	$=$	3-D General Beam
42	$=$	2-D or Axisymmetric Gap
43	$=$	3-D Gap
45	$=$	3-D Cable element
46	$=$	3-D Straight Pipe Element
47	$=$	3-D Elbow Element
48	$=$	3-D Damper
49	$=$	2-D Gap/Friction Element
112	$=$	3-D Bar Element for Heat Transfer
149	$=$	3-D Convection Link Element
150	$=$	3-D Radiation Link Element

LINe,MESh,range

Mesh lines within 'range' with elements specified by current 'Line Element Mesh Settings'.
LINe,MOVe,linenumber,delta x, delta y,delta z
Move Line 'linenumber' by 'delta x, delta y,delta z '. This function actually identifies the points marking the end of the line, and moves them.

LINe, PLOt,ALL
Plot all lines
LINe,PLOt,ASsociation, POInt
Plot all lines associated with currently selected points.

LINe,PLOt,ASsociation,SURface

Plot all lines associated with currently selected surfaces.

LINe,PLOt,NONe

Erase all lines
LINe, PLOt,SELected
Plot all selected lines. Should be redundant as all lines should be plotted as they are selected.
LINe, PLOt,range
Plot a range of lines.

LINe,SELect,ALL

Select all lines.
LINe,SELect,ASsociation, POInt
Select lines by association with currently selected points.
LINe,SELect,ASsociation,SURface
Select lines by association with currently selected surfaces.
LINe,SELect,NONe
Deselect all lines.
LINe,SELect,NOT
Invert line selection.
LINe,SELect,REVerse
Invert line selection.
LINe,SELect,VISible
Select all visible lines.
LINe,SELect,range
Select lines that fall within 'range'.
LINe,UNSELect,ALL
Deselect all lines
LINe, UNSELect, ASsociation, POInt
Deselect lines by association with currently selected points.
LINe,UNSELect,ASsociation,SURface
Deselect lines by association with currently selected surfaces.
LINe,UNSELect,NONe
Select all lines.
LINe, UNSELect,NOT
Invert line selection.
LINe, UNSELect,REVerse
Invert line selection.
LINe, UNSELect,range
Deselect a range of lines.
LINe,VISible,ALL
Plot all lines
LINe, VISible,ASsociation, POInt
Plot all lines associated with currently selected points.
LINe, VISible, ASsociation, SURface
Plot all lines associated with currently selected surfaces.
LINe, VISible,NONe
Erase all lines
LINe,VISible,SELected
Plot all selected lines. Should be redundant as all lines should be plotted as they are selected.

LINe, VISible,range
Plot a range of lines.

2.2.9 Surfaces

The following commands relate to surfaces.
SURface,ADD,2Line,surfacenumber,layernumber,LIne,linenumber1,line1reversed,LIne,linenumber2,line2reve rsed
Adds a surface with 2 Straight Lines. The new surface is 'surfacenumber', and is added to layer 'layernumber'. The first line is 'linenumber1', and the line is reversed if line1reversed = 1, and not reversed if line1reversed = 0 . The second line defining the surface is 'linenumber2'. Line 2 is reversed if line2reversed $=1$, and not reversed if line2reversed $=0$. If both lines are parallel and start at the ends nearest to each other, then line2reversed should be '1' otherwise an hourglass shaped surface will be created.

It is not envisaged that this command will need to be used manually.
SURface, AUTomesh, ALL, target edge length
Automesh all surfaces, with the elements of type specified by the current surface mesh settings. The number of elements along each edge of a surface is the closest interger multiple of the target edge length on that surface edge.

SURface, AUTomesh, SELected, target edge length
Automesh all selected surfaces, with the elements of type specified by the current surface mesh settings. The number of elements along each edge of a surface is the closest interger multiple of the target edge length on that surface edge.

SURface, AUTomesh, SET, target edge length
Specify the target edge length for automeshing.

SURface, AUTomesh, SET

Open an interactive window to specify the automesh parameters.
SURface,CALculate,NORmalcentroid
Recalculates the surface normal and centroid in the event of a bug causing the information to be out of date.

SURface,COLour

Opens a dialogue box to set the colours of surfaces.
SURface,COLour,surfacecolour,surfaceoutlinecolour
Sets the colours of surfaces and selected surfaces.
SURface, DELete, ALL
Delete all surfaces.
SURface,DELete,INACTive
Delete all surfaces not referenced by solids.
SURface,DELete,SELected
Delete selected surfaces.
SURface,DELete,range
Delete range of surfaces.
SURface,ERAse,ALL
Erase all surfaces.
SURface,ERAse,ASsociation,LINe
Erase surfaces associated with currently selected lines.
SURface,ERAse,ASsociation,POInt
Erase surfaces associated with currently selected points.

SURface,ERAse,NONe

Plot all surfaces.
SURface,ERAse,SELected
Erase selected surfaces.
SURface,ERAse,range
Erase all surfaces within 'range'.

SURface,FILLtype,DEpth

Change the surface fill colour to depth shaded.

SURface,FILLtype,SHaded

Change the surface fill colour to infinite light shaded.

SURface,FILLtype,ID

Set the surface fill colour to be by ID number.
SURface, FINd,range
Plot all surfaces within 'range' on top of the current screen \& temporarily label them. If the surfaces are currently invisible, they are made visible.

SURface,INSPect

Starts the interactive surface inspection routine

SURface,MESh, ALL

Mesh all surfaces with shell elements according to the current 'Shell Element Mesh Settings'.
SURface,MESh,EDGe,edge1,edge2,edge3,edge4
Specify numbers of elements to be meshed along each surface edge. If surface is triangular, edge 4 is ignored.

SURface,MESh,SELected

Mesh selected surfaces with shell elements according to the current 'Shell Element Mesh Settings'.
SURface,MESh,SETup,elementtype,propertynumber,materialnumber,elementorder,Unumber,Vnumber,erase_ surface_after_meshing
Specify the surface mesh settings. The element type must be one of the following:-
$20=3 D$ General Shell
$32=3 D$ Laminated Composite Shell
$33=3 D$ Sandwich Shell
$120=3 D$ Thin Shell for Heat Transfer
The material number and property number are specified by 'materialnumber' and 'propertynumber'. The element order is as below:-

$$
\begin{array}{lll}
1 & = & \text { Linear } \\
2 & = & \text { Parabolic }
\end{array}
$$

The 'Unumber' indicates the number of elements in the surface ' U ' direction (along the first line in the surface)
and the 'Vnumber' indicates the number of elements in the direction perpendicular to the first line in the surface.
If 'erase_surface_after_meshing' $=1$, then the surface that was meshed is erased, while if 'erase_surface_after_meshing' $=0$, it is not.

SURface,MESh,range
Mesh surfaces within 'range' with shell elements according to the current 'Shell Element Mesh Settings'.

SURface,PLOt,ALL

Plot all surfaces

SURface,PLOt,ASsociation,LINe

Plot surfaces by association with currently selected lines.

SURface,PLOt,ASsociation,POInt

Plot surfaces by association with currently selected points.

SURface, PLOt,NONe

Erase all surfaces.
SURface, PLOt,SELected
Plot selected surfaces. This command should be redundant.
SURface,PLOt,range
Plot surfaces within 'range'.
SURface,REVERSENormals,ALL
Reverse the normals of all surfaces.
SURface,REVERSENormals,SELected
Reverse the normals of the selected surfaces.
SURface,REVERSENormals,range
Reverse the normals of surfaces within 'range'.

SURface,SELect,ALL

Select all surfaces.
SURface,SELect,ASsociation,LINe
Select surfaces by association with currently selected lines.
SURface,SELect,ASsociation,POInt
Select surfaces by association with currently selected points.
SURface,SELect,NONe
Deselect all surfaces.
SURface,SELect,NOT
Invert surface selection.
SURface,SELect,REVerse
Invert surface selection.
SURface,SELect,VISible
Select all visible surfaces.
SURface,SELect,range
Select surfaces within 'range'.
SURface,UNSELect,ALL
Deselect all surfaces.
SURface,UNSELect,ASsociation,LINe
Deselect surfaces by association with currently selected lines.
SURface,UNSELect,ASsociation, POInt
Deselect surfaces by association with currently selected points.

SURface,UNSELect,NONe

Select all surfaces.
SURface,UNSELect,NOT
Invert surface selection.
SURface,UNSELect,REVerse
Invert surface selection.

SURface,UNSELect,range

Deselect surfaces within 'range'.
SURface,VISible,ALL
Plot all surfaces
SURface,VISible,ASsociation,LINe
Plot surfaces by association with currently selected lines.
SURface,VISible,ASsociation,POInt
Plot surfaces by association with currently selected points.

SURface,VISible,NONe

Erase all surfaces.
SURface,VISible,SELected
Plot selected surfaces. This command should be redundant.
SURface,VISible,range
Plot surfaces within 'range'.

2.2.10 Meshing Commands

The following commands relate to meshing geometry to form nodes and elements.
POInt,MESh,ALL
Mesh all points with point elements according to the current 'Point Element Mesh Settings'.
POInt,MESh,SELected
Mesh selected points with point elements according to the current 'Point Element Mesh Settings'.
POInt,MESh,SETup,elementtype,propertynumber
Set up the 'Point Element Mesh Settings'. The property number is 'propertynumber', while the element type must be one of the following:-

25	$=$	2D Concentrated Mass
26	$=$	3D Concentrated Mass
27	$=$	2D General Mass
28	$=$	3D General Mass
29	$=$	2D General Mass with Inertia
30	$=$	3D General Mass with Inertia

POInt,MESh,range
Mesh all points within 'range' with point elements according to the current 'Point Element Mesh Settings'.

LINe,MESh,ALL

Mesh all lines with line elements according to the current 'Line Element Mesh Settings'.
LINe,MESh,SELected
Mesh selected lines with line elements according to the current 'Line Element Mesh Settings'
LINe,MESh,SETup,elementtype,propertynumber,materialnumber,numberofelements
Specify the current 'Line Element Mesh Settings'. The new property number is 'propertynumber', the new material number is 'materialnumber'. The number of elements along each line is specified by 'numberofelements.
The element type must be one of the following:-

11	$=$	3-D Tapered Beam
12	$=$	3-D Beam
13	$=$	2-D Beam
14	$=$	$3-D$ Spar
15	$=$	2-D Spar
17	$=$	3-D Translational Spring
18	$=$	2-D Translational Spring
21	$=$	3-D Torsional Spring
22	$=$	2-D Torsional Spring
38	$=$	3-D General Spring
39	$=$	3-D General Beam
42	$=$	2-D or Axisymmetric Gap
43	$=$	3-D Gap
45	$=$	3-D Cable element
46	$=$	3-D Straight Pipe Element
47	$=$	3-D Damper
48	$=$	2-D Gap/Friction Element
49	$=$	3-D Bar Element for Heat Transfer
112	$=$	3-D Convection Link Element
149	$=$	3-D Radiation Link Element
150	$=$	

LINe,MESh,range
Mesh lines within 'range' with elements specified by current 'Line Element Mesh Settings'.

SURface, AUTomesh, ALL, target edge length
Automesh all surfaces, with the elements of type specified by the current surface mesh settings. The number of elements along each edge of a surface is the closest interger multiple of the target edge length on that surface edge.

SURface, AUTomesh, SELected, target edge length
Automesh all selected surfaces, with the elements of type specified by the current surface mesh settings. The number of elements along each edge of a surface is the closest interger multiple of the target edge length on that surface edge..

SURface, AUTomesh, SET, target edge length
Specify the target edge length for automeshing.

SURface, AUTomesh, SET

Open an interactive window to specify the automesh parameters.

SURface,MESh,ALL

Mesh all surfaces with shell elements according to the current 'Shell Element Mesh Settings'.
SURface,MESh,EDGe,edge1,edge2,edge3,edge4
Specify numbers of elements to be meshed along each surface edge. If surface is triangular, edge4 is ignored.

SURface,MESh,SELected

Mesh selected surfaces with shell elements according to the current 'Shell Element Mesh Settings'.
SURface,MESh,SETup,elementtype,propertynumber,materialnumber,elementorder,Unumber,Vnumber, erase_surface_after_meshing
Specify the surface mesh settings. The element type must be one of the following:-
$20=3 D$ General Shell
$32=3 D$ Laminated Composite Shell
$33=3 D$ Sandwich Shell
$120=3 D$ Thin Shell for Heat Transfer
The material number and property number are specified by 'materialnumber' and 'propertynumber'. The element order is as below:-
$1=$ Linear
$2=$ Parabolic
The 'Unumber' indicates the number of elements in the surface ' U ' direction (along the first line in the surface) and the 'Vnumber' indicates the number of elements in the direction perpendicular to the first line in the surface.
If 'erase_surface_after_meshing' $=1$, then the surface that was meshed is erased, while if 'erase_surface_after_meshing' $=0$, it is not.

SURface,MESh,range
Mesh surfaces within 'range' with shell elements according to the current 'Shell Element Mesh Settings'.

2.2.11 Executive Commands

The following commands relate to the executive commands that control the FE analysis.
EXECutiveCommands, ANALysistype,type
Specifies the analysis type. 'type' may be either 'STatic' or 'Elgen'. At the time of writing of the Command Reference, Static Analysis was the only fully implemented analysis type. For Eigen analysis some data cards will need to be added manually to the FE analysis file.

EXECutiveCommands,AUTOconstrain,state

NISA specific command. Specifies whether a NISA model is to have shells automatically constrained against spurious rotation about their normal. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands,BLANKcommon,number

NISA specific command. For a NISA analysis the size of the Blank Common scratch area needs to be defined. This must be at least $7 x$ the number of nodes - but experience shows that this is a minimum figure that sometimes isn't enough. When the NISA file is exported (using 'EXPORT,NISA,filename') the minimum value of Blank Common is calculated and rounded up to the next highest 50,000 . The number that is exported is the higher of the figure entered here and the figure calculated.

EXECutiveCommands,COMPutegeometricproperties,state
NISA specific command. Specifies whether NISA is to compute the model geometric properties. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands,ECHO,state
Specifies whether the geometry is to be echoed in the output file. 'state' is either 'ON' or 'OFF'. The default value of 'state' is ' ON '.

EXECutiveCommands,EIGENtype,type

NISA specific command. Specifies the Eigen analysis type. Type must be one of the following:-
ACcelerated
COnventional
INverse
LAnczos
GUyan
The default is none of the above.
EXECutiveCommands,EXECutiontype,type
NISA specific command. Specifies the way the analysis proceeds. Type must be one of the following:-
EXecuteonly
CHECKOnly
CHECKAndexecute
The default is CHECKAndexecute
EXECutiveCommands,FILEroot,name
NISA specific command. Specify the starting section of the filename of the binary analysis files saved by NISA.
Eg EXECutiveCommands,FILEroot,Block
Indicates that NISA will save the 26 and 27 files as 'Block26.dat' and 'Block27.dat'.
EXECutiveCommands,INCludekinematicconstraints,state
NISA specific command. Specifies whether Kinematic constraints are to be included. 'state' is either 'ON' or
' $O F F$ '. The default value of 'state' is ' ON '.
EXECutiveCommands,MASSformulation,type
NISA specific command. Specifies the way masses are considered. Type must be one of the following:COnsistent
LUmped
The default is COnsistent.

EXECutiveCommands,RESEQUENCEOptions,option
NISA specific command. Element resequencing is carried out. Option must be one of the following:-
ON
OFf
GEom
BOth
The default is $\mathbf{O N}$.
EXECutiveCommands,RESEQUENCEMax,state
NISA specific command. Specifies whether the maximum is to be listed in element resequencing. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands,RESEQUENCEList,state
NISA specific command. Specifies whether the internal cross reference list during element resequencing is to be listed in the output file. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands,TARGETprogram, name

Specifies the model target program. Name must be one of the following:-

MYstran

NIsa
The default is NIsa
EXECutiveCommands,SAVEGeometarybinary,state
NISA specific command. Specifies whether the '26. dat' file is to be saved. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands, SAVEOutputbinary, state
NISA specific command. Specifies whether the '27.dat' file is to be saved. 'state' is either 'ON' or 'OFF'. The default value of 'state' is 'ON'.

EXECutiveCommands,SORT,number
NISA specific command. Specifies whether how many top stresses are to be sorted. No default.
EXECutiveCommands,WARNingaction, action
NISA specific command. Specifies the FE analysis behaviour when a warning occurs. Action must be one of the following:-

GO

STop
The default is GO

2.2.12 Nodes

The following commands relate to Nodes.
NODe,ADD
Add a single node by typing x, y, z co-ordinates into a dialogue box.
NODe,ADD, nodenumber,lcs, x,y,z[,selected,visible,colour,layernumber]
Add node 'nodenumber' which has local co-ordinate system defined by Ics. The global Cartesian co-ordinates of the node are x, y, z. If defined, the node is selected if selected $=1$, it is visible if visible $=1$, the node colour is 'colour' a 24 bit RGB colour representation. The layer number of the node is layernumber.

NODe,ALIGN,direction X or Y or Z ,value
Moves the $\mathrm{X} Y$ or Z value of the selected node co-ordinates to 'value'.
NODe,COLour
Set node colour by opening dialogue box.
NODe,COLour,ALL,colour
Change the colour of all nodes to 'colour'.
NODe,COMPactids
Open dialogue box to compact nodal ID numbers.
NODe,COMPactids,start,increment
Compact the ID numbers of selected nodes starting at 'start', with increment 'increment'. No dialogue box is opened.

NODe,DELete,ALL
Delete all nodes.
NODe,DELete,INACTive
Delete all inactive nodes.
NODe,DELete,SELected
Deletes all selected nodes.
NODe,DELete,range
Deletes a range of node numbers.

NODe,ERAse,ALL

Erase all nodes.
NODe,ERAse,ASsociation,ELEment
Erase all nodes associated with the currently selected Elements.
NODe,ERAse,ASsociation,RIGidLink
Erase all nodes associated with the currently selected Rigid Links
NODe,ERAse,ASsociation,NDISPlacement
Erase all nodes associated with the currently selected Displacement Constraints
NODe,ERAse,ASsociation, PRESSure
Erase all nodes associated with the currently selected Pressures
NODe,ERAse,ASsociation,NPRESSure
Erase all nodes associated with the currently selected Nodal Pressures
NODe,ERAse,ASsociation,NFORce
Erase all nodes associated with the currently selected Forces

NODe,ERAse,NONe

Plot all nodes.
NODe,ERAse,SELected
Erase selected nodes.
NODe,ERAse,range
Erases a range of node numbers.
NODe,FINd,range
Finds a range of node numbers and displays them on the screen with their labels temporarily switched on.

NODe,INACTive

Delete all inactive nodes, equivalent to 'NODe,DELete,INACTive'
NODe,INSPect
Opens a dialogue window listing locations of all nodes.
NODe,MERge[,tolerance]
Merge selected nodes. If defined, 'tolerance' is used as the maximum merge distance between nodes.
NODe,MOVe,nodenumber,new x,new y,new z
Move node 'nodenumber' to Cartesian co-ordinate 'new x, new y,new z'
NODe,PLOt,ALL
Plot all nodes.
NODe,PLOt,ASsociation,ELEment
Plot all nodes associated with the currently selected elements
NODe,PLOt,ASsociation,RIGidLink
Plot all nodes associated with the currently selected Rigid Links
NODe,PLOt,ASsociation,NDISPlacement
Plot all nodes associated with the currently selected Displacement Constraints
NODe,PLOt,ASsociation,PRESSure
Plot all nodes associated with the currently selected Pressures
NODe,PLOt,ASsociation,NPRESSure
Plot all nodes associated with the currently selected Nodal Pressures
NODe,PLOt,ASsociation,NFORce
Plot all nodes associated with the currently selected Forces

NODe,PLOt,NONe

Erase all nodes
NODe,PLOt,SELected
Plots all selected nodes. This should be redundant as all nodes should be made visible as they are selected.
NODe,PLOt,range
Plots a range of nodes.
NODe,RENumber,old nodenumber,new nodenumber
Renumber node with 'old nodenumber' as 'new nodenumber'

NODe,SELect,ALL

Select all nodes. If nodes are invisible prior to being selected, they are made visible.
NODe,SELect,ASsociation,ELEment

Select all nodes associated with the currently selected Elements. If nodes are invisible prior to being selected, they are made visible.

NODe,SELect,ASsociation,RIGidLink
Select all nodes associated with the currently selected Rigid Links. If nodes are invisible prior to being selected, they are made visible.

NODe,SELect,ASsociation,NDISPlacement
Select all nodes associated with the currently selected Displacement Constraints
NODe,SELect,ASsociation,PRESSure
Select all nodes associated with the currently selected Pressures
NODe,SELect,ASsociation,NPRESSure
Select all nodes associated with the currently selected Nodal Pressures
NODe,SELect,ASsociation,NFORce
Select all nodes associated with the currently selected Forces
NODe,SELected,FALse,nodenumber
Deselect node 'nodenumber'
NODe,SELect,NONe
Deselect all nodes.
NODe,SELect,NOT
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,REVerse'

NODe,SELect,REVerse
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,NOT'

NODe,SELect,range
Selects a range of node numbers. If nodes are invisible prior to being selected, they are made visible.
NODe,SELected,TRUe, nodenumber
Select node 'nodenumber'. If node is invisible prior to being selected, it is made visible.
NODe,SELect,VISible
Select all visible nodes.
NODe,SELect,XRANGE, max value, min value
Select all nodes with an X co-ordinate between Max value and Min value.
NODe,SELect, YRANGE, max value, min value
Select all nodes with an Y co-ordinate between Max value and Min value.
NODe,SELect,ZRANGE, max value, min value
Select all nodes with an Z co-ordinate between Max value and Min value.

NODe,UNSELect,ALL

Deselect all nodes.
NODe,UNSELect,ASsociation,ELEment
Deselect all nodes associated with the currently selected Elements. If nodes are invisible prior to being selected, they are made visible.

NODe,UNSELect,ASsociation,RIGidLink
Deselect all nodes associated with the currently selected Rigid Links. If nodes are invisible prior to being selected, they are made visible.

NODe,UNSELect,ASsociation,NDISPlacement

Deselect all nodes associated with the currently selected Displacement Constraints
NODe,UNSELect,ASsociation,PRESSure
Deselect all nodes associated with the currently selected Pressures
NODe,UNSELect,ASsociation,NPRESSure
Deselect all nodes associated with the currently selected Nodal Pressures
NODe, UNSELect,ASsociation,NFORce
Deselect all nodes associated with the currently selected Forces
NODe,UNSELect,NONe
Select all nodes.

NODe,UNSELect,NOT
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,REVerse'

NODe,UNSELect,REVerse
Invert selection of all nodes. If nodes are invisible prior to being selected, they are made visible. Equivalent to 'NODe,SELect,REVerse'

NODe,UNSELect,range
Deselects a range of node numbers.
NODe,VISible,ALL
Plot all nodes.
NODe,VISible,ASsociation,ELEment
Plot all nodes associated with the currently selected elements
NODe,VISible,ASsociation,RIGidLink
Plot all nodes associated with the currently selected Rigid Links
NODe,VISible,ASsociation,NDISPlacement
Plot all nodes associated with the currently selected Displacement Constraints
NODe,VISible,ASsociation, PRESSure
Plot all nodes associated with the currently selected Pressures
NODe,VISible,ASsociation,NPRESSure
Plot all nodes associated with the currently selected Nodal Pressures
NODe,VISible,ASsociation,NFORce
Plot all nodes associated with the currently selected Forces

NODe,VISible,NONe

Erase all nodes
NODe,VISible,SELected
Plots all selected nodes. This should be redundant as all nodes should be made visible as they are selected.
NODe,VISible,range
Plots a range of nodes.

2.2.13 Elements

The following commands are element related.
ELEment,ADD,elementnumber,materialnumber,propertynumber,elementtype,nodeorder,numberofnodes,node list,[layernumber,groupnumber,]
Adds an element. The new element has number 'elementnumber', is allocated material 'materialnumber' and property 'propertynumber'. The element type is the NISA NKTP number and is as below:-

Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
43 3D Gap
45 3D Cable
46 3D Straight Pipe
47 3D Elbow
48 3D Translational Damper
49 2D Gap/Friction
50 3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer
The Node Order is the order of the element, and is defined as below:-
Node Order Description
$1 \quad$ For all point or line elements
1 For all 2 noded axisymmetric shell elements

1 For all 4 noded shell elements/ 4 noded axisymmetric solid elements
1 or 12
2
For all 8 noded solid elements
For all 3 noded axisymmetric elements
For all 8 noded shell elements
For all 20 noded brick elements
For 3 Noded triangular shell elements
6 noded prism shaped brick elements
6 Noded triangular shell elements
15 noded prism brick elements
4 noded triangular pyramid solid elements
10 noded triangular pyramid solid elements
5 noded rectangular pyramid elements
13 noded rectangular pyramid elements
The layernumber and group numbers are optional.

ELEment,CALculate,CENtroid

Recalculates the element face centroid and centroid in the event of a bug causing the information to be out of date.

ELEment, CALculate,NORmal

Recalculates the element normal, in the event of a bug causing the information to be out of date.

ELEment,CALculate,NORMALCentroid

Recalculates the element normal, face centroid and centroid in the event of a bug causing the information to be out of date.

ELEment,CENtroid,RECalculate

Recalculates the element centroids. Intended to correct an error in element copy/move operations if the elements cannot be subsequently selected. In a program with no bugs, this will be redundant.

ELEment,CHANGEMaterial,elementnumber, newnumber
Change the material of element 'elementnumber' to 'newnumber'
ELEment,CHANGEProperty,elementnumber,newnumber
Change the property of element 'elementnumber' to 'newnumber'

ELEment,COLour

Set the colour of the selected elements

ELEment,COLOURLIST

Opens a window to set the sixteen colours used to differentiate between materials, groups, layers etc.
ELEment,COLOURLIST, listnumber,colour
Sets colour list 'listnumber' to 'colour'.
ELEment,COLour,SELected
Set the colour of the selected elements
ELEement,COLour,elementnumber,colour
Set the colour of element number 'elementnumber' to 'colour'

ELEment,COMPactids

Open dialogue box to compact element ID numbers.

ELEment,DELete,ALL

Delete all elements
ELEment,DELete,SELected
Delete Selected Elements

ELEment,DELete,range
Delete a range of elements
ELEment,EDGeoutlines,state
Determine whether to plot element edge outlines. State is either ON or OFF.
ELEment,ELIminateCommonFaces
Calculates internal element faces in solid models. Turns the plotting of such faces off to speed up plotting.

ELEment,ERAse,ALL

Erase all elements
ELEment,ERAse,ASsociation,NODe
Erase elements associated with selected nodes.
ELEment,ERAse,ASsociation,NDISPlacements
Erase Elements by association with selected Nodal Displacements
ELEment,ERAse,ASsociation,NFORce
Erase Elements by association with selected Forces
ELEment,ERAse,ASsociation,NPRESSure
Erase t Elements by association with selected Nodal Pressures
ELEment,ERAse,ASsociation,PRESSure
Erase Elements by association with selected Pressures
ELEment,ERAse,ASsociation,RIGidLink
Erase elements by association with selected Rigid Links
ELEment,ERAse,FORMulation,range
Erase the elements by formulation. The value of the integers in range are:-
Formulation Description
1 Linear
2 Parabolic
3 Cubic
4 Mixed
ELEment,ERAse,NONe
Plot all elements
ELEment,ERAse,SELected
Erase selected elements
ELEment,ERAse,MATerial,range
Erase all elements with material number specified in 'range'
ELEment,ERAse,NORDR,range
Erase all elements with Node Order number specified in 'range'
ELEment,ERAse,NSRL,range
Erase all elements with NSRL number specified in 'range'
ELEment,ERAse,PROPerty,range
Erase all elements with property number specified in 'range'
ELEment,ERAse,TYPE,range
Erase all elements with element type number specified in 'range'
The element type is the NISA NKTP number and is as below:-
$\begin{array}{ll}\text { Type } & \text { Description } \\ 1 & \text { 2D Plane Stress Element }\end{array}$
2D Plane Stress Element
Axisymmetric Solid Element
3D Thick Solid Element
3D Thick Shell Element
3D Laminated Solid
3D Hybrid Solid
3D Membrane
3D Tapered Beam
3D Beam Element
2D Beam Element
3D Spar Element
2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,ERAse,range
Erase all elements within 'range'
ELEment,FILIcolour
Set the element fill colour to be by face number. Seemed a good idea at the time.
ELEment,INSPspect
Starts the interactive element inspection routine
ELEment,NODEReplace,elementnumber,oldnodenumber,newnodenumber
In element 'elementnumber', replace 'oldnodenumber' with 'newnodenumber'.
ELEment,ORDer,LINeartoparabolic
Changes all selected linear elements to parabolic formulation

ELEment,PLOt,ALL

Plot all elements

ELEment,PLOt,ASsociation,NODe

Plot elements by association with selected nodes
ELEment,PLOt,ASsociation,NDISPlacements
Plot Elements by association with selected Nodal Displacements

ELEment,PLOt, ASsociation,NFORce

Plot Elements by association with selected Forces

ELEment,PLOt,ASsociation,NPRESSure

Plot Elements by association with selected Nodal Pressures
ELEment,PLOt,ASsociation,PRESSure
Plot Elements by association with selected Pressures
ELEment,PLOt,ASsociation,RIGidLink
Plot Elements by association with selected Rigid Links
ELEment,PLOt,FORMulation,range
Plot the elements by formulation. The value of the integers in range are:-

Formulation Description

1 Linear
2 Parabolic
3 Cubic
4 Mixed
ELEment,PLOt,MATerial,range
Plot the elements by material range.
ELEment,PLOt,NKTP,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia

30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
43 3D Gap
45 3D Cable
46 3D Straight Pipe
47 3D Elbow
48 3D Translational Damper
49 2D Gap/Friction
50 3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer
ELEment,PLOt,NORDR,range
Plot the elements by Node Order range.
ELEment,PLOt,NSRL,range
Plot the elements by NSRL range.
ELEment,PLOt,PROPerty,range
Plot the elements by property range.
ELEment,PLOt,TYPE,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia

ELEment,PLOt,NONe

Erase all elements
ELEment,PLOt,SELected
Plot selected elements
ELEment,PLOt,range
Plot element range.
ELEment,ORDer,LINeartoparabolic
Changes all selected linear elements to parabolic formulation

ELEment,ORDer,PARabolictolinear

Changes all selected parabolic elements to linear formulation

ELEment,REPair,NORDR

Run through all the elements and, based on the numbers of nodes in the element, sets the Node Order. This can be useful after a difficult to repair bug occurs.

ELEment,REPair,NSRL

Recalculates all the element NSRL numbers based on the element Node Order and Type. This can be useful after a difficult to repair bug occurs.

ELEment,REVersenormal,SELected
Reverse the normals on selected shell elements
ELEment,REVersenormal,range
Reverse normals on elements within 'range'.

ELEment,SELect,ALLNODESselected

Select all elements where all their nodes are already selected. Any selected elements initially invisible are plotted.

ELEment,SELect,ALL

Select all elements. Any selected elements initially invisible are plotted.

ELEment,SELect,ASsociation,NODe

Select elements associated with selected nodes. Any selected elements initially invisible are plotted.

ELEment,SELect,ASsociation,NDISPlacements

Select Elements by association with selected Nodal Displacements
ELEment,SELect,ASsociation,NFORce
Select Elements by association with selected Forces

ELEment,SELect,ASsociation,NPRESSure

Select Elements by association with selected Nodal Pressures

ELEment,SELect,ASsociation,PRESSure

Select Elements by association with selected Pressures

ELEment, SELect, ASsociation,RIGidLink

Select elements associated with selected Rigid Links. Any selected elements initially invisible are plotted.
ELEment, SELected, CHANGEMaterial, newnumber
Set the material number in all selected elements to 'newnumber'.
ELEment, SELected, CHANGEProperty, newnumber
Set the property number in all selected elements to 'newnumber'.

ELEment, SELected, DETriangulate

In the selected elements, detriangulate as many elements as possible. The function checks to see if any two triangular elements have a common long edge, and merge that edge to form a quadrilateral element. Only works with Element Type 20, Node Order 10 elements, turning them into Node Order 1 elements. Note: This function deletes the triangles. Texture mapping is preserved, but node normal directions are lost. If the operation is undone, the undeleted elements loose any texture mapping and node normal directions.

ELEment, SELect, DUPLIcates

Select all duplicated elements - whether forward or reverse nodal definitions.
ELEment,SELect,FORMulation,range
Select the elements by formulation. The value of the integers in range are:-

Formulation	Description
1	Linear
2	Parabolic
3	Cubic
4	Mixed

Any selected elements initially invisible are plotted.
ELEment,SELect,MATerial,range
Select all elements with material in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELect,NKTP,range

Select all elements with element type in 'range'. Any selected elements initially invisible are plotted.
The element type is the NISA NKTP number and is as below:-

Type Description

1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element

14	3D Spar Element
15	2D Spar
17	3D Translational Spring
18	2D Translational Spring
20	3D General Shell
21	3D Torsional Spring
22	2D Torsional Spring
25	2D Mass
26	3D Mass
27	2D General Mass
28	3D General Mass
29	2D Mass and Inertia
30	3D Mass and Inertia
32	3D Laminated Composite
33	3D Laminated Sandwich (Honeycomb)
34	Axisymmetric Solid with Non-Axisymmetric Loading
36	Axisymmetric sell
37	Axisymmetric shell with Non-Axisymmetric Loading
38	3D General Spring
39	3D General Beam
40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction
50	3D Gap/Friction
104	3D Solid for Heat Transfer
105	3D Thick Shell for Heat Transfer
112	3D Bar for Heat Transfer
120	3D Thin Shell for Heat Transfer
149	3D Convection Link for Heat Transfer
150	3D Radiation Link for Heat Transfer

ELEment,SELect,NONe

Deselect all elements

ELEment,SELect,NORDR,range
Select all elements with Node Order in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELection,NOT

Invert the selection of the element. Any selected elements initially invisible are plotted.
ELEment,SELect,NSRL,range
Select all elements with NSRL in 'range'. Any selected elements initially invisible are plotted.
ELEment,SELected,OFFSet, value
Copy the currently selected NKTP 20 Shell elements a distance of 'value' in the same direction as the shell normal.

ELEment,SELect,PROPerty,range

Select all elements with property in 'range'. Any selected elements initially invisible are plotted.

ELEment,SELection,REVerse

Invert the selection of the element. Any selected elements initially invisible are plotted.
ELEment,SELection,SHApe, range
Invert the selection of the element. Any selected elements initially invisible are plotted.

The element shape is as below:-
Shape Description
1 Point Element
2 Line Element
3 Axisymmetric Shell Element
4 Axisymmetric Solid Element
5 Heat Transfer Element
6 Planar Element
7 Shell Element
8 Solid Element

ELEment,SELected,THICken, value

Copy the currently selected NKTP 20 Shell elements a distance of 'value' in the opposite direction to the shell normal. Then the perimeter of the selected group of elements is sealed by the addition of shell elements around the open edge of the selected group. This is primarily used for OBJ files making them thick enough to be used in 3D printers.

ELEment,SELect,TYPE,range

Select all elements with element type in 'range'. Any selected elements initially invisible are plotted.
The element type is the NISA NKTP number and is as below:-

Type	Description
1	2D Plane Stress Element
2	2D Plane Stress Element
3	Axisymmetric Solid Element
4	3D Thick Solid Element
5	3D Thick Shell Element
7	3D Laminated Solid
9	3D Hybrid Solid
10	3D Membrane
11	3D Tapered Beam
12	3D Beam Element
13	2D Beam Element
14	3D Spar Element
15	2D Spar
17	3D Translational Spring
18	2D Translational Spring
20	3D General Shell
21	3D Torsional Spring
22	2D Torsional Spring
25	2D Mass
26	3D Mass
27	2D General Mass
28	3D General Mass
29	2D Mass and Inertia
30	3D Mass and Inertia
32	3D Laminated Composite
33	3D Laminated Sandwich (Honeycomb)
34	Axisymmetric Solid with Non-Axisymmetric Loading
36	Axisymmetric shell
37	Axisymmetric shell with Non-Axisymmetric Loading
38	3D General Spring
39	3D General Beam
40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction

112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer

ELEment,SELect,VISible

Select all visible elements.

ELEment,SELect,range

Select all elements in 'range'. Any selected elements initially invisible are plotted.

ELEment,SEParate,SELected

Separate the selected elements from the remainder of the model.

ELEment,SHIftorigin, range

Rotate origin of all elements in 'range' by one corner anti-clockwise about the element normal.

ELEment,SHIftorigin,SELected

Rotate origin of all elements in 'range' by one corner anti-clockwise about the element normal.
ELEment,SLIce,Point1.x,Point1.y,Point1.z,Point2.x, Point2.y, Point2.z, Point3.x, Point3.y, Point3.z This command slices all selected linear shell elements along the plane defined by points 1,2 and 3 .

ELEment,TEXturemap,ADD,ALL,left,bottom,right,top,stretch map to fit area
Texture map all elements into area defined by the rectangle left,bottom,right,top. All values defining the rectangle must be between 0.0 and 1.0. If the map is to be stretched over the area defined 'stretch map to fit area' $=1$, to retain the model proportions, it needs to be 0 ; eg

```
ELE, TEXturemap, ADD, ALL, 0.0,0.0,1.0,1.0,1
```

ELEment,TEXturemap,ADD,SELected,left,bottom,right,top,stretch map to fit area
Texture map selected elements into area defined by the rectangle left,bottom,right,top. All values defining the rectangle must be between 0.0 and 1.0. If the map is to be stretched over the area defined 'stretch map to fit area' $=1$, to retain the model proportions, it needs to be 0 .

ELEment,TEXturemap,BOX,ADD,ALL,left,bottom,right,top
Texture map all elements into area defined by the rectangle left,bottom,right,top, using a box texture mapping method assuming $+\mathrm{Y}=$ up. All values defining the rectangle area of the map the elements are mapped onto must be between 0.0 and 1.0.; eg

ELE, TEXturemap, BOX, ADD, ALL, 0.0, 0.0, 1.0, 1. 0

ELEment,TEXturemap,BOX,ADD,SELected,left,bottom,right,top
Texture map the selected elements into area defined by the rectangle left,bottom,right,top, using a box texture mapping method assuming $+Y=$ up. All values defining the rectangle area of the map the elements are mapped onto must be between 0.0 and 1.0.

ELEment,TEXturemap,DELete,ALL

Delete texture mapping on all elements
ELEment,TEXturemap,DELete,FACe,elementnumber,facenumber, Delete the texture mapping on element 'elementnumber', face 'facenumber'

ELEment,TEXturemap,DELete,SELected
Delete texture mapping on the selected elements.
ELEment,TEXturemap,FACe,elementnumber,facenumber,texturenodenumberlist....

Apply a texture map to element number 'elementnumber' and face 'facenumber'. The texture node numbers are specified in texturenodenumberlist.

ELEment,UNSELect,ALL

Deselect all elements

ELEment,UNSELect,ASsociation,NODe

Deselect elements associated with selected nodes. Any selected elements initially invisible are plotted.

ELEment,UNSELect,ASsociation,NDISPlacements

Deselect Elements by association with selected Nodal Displacements
ELEment,UNSELect,ASsociation,NFORce
Deselect Elements by association with selected Forces

ELEment,UNSELect,ASsociation,NPRESSure

Deselect Elements by association with selected Nodal Pressures
ELEment,UNSELect,ASsociation,PRESSure
Deselect Elements by association with selected Pressures
ELEment,UNSELect,ASsociation,RIGidLink
Deselect elements associated with selected Rigid Links. Any selected elements initially invisible are plotted.

ELEment,UNSELect,FORMulation,range

Deselect the elements by formulation. The value of the integers in range are:-

Formulation Description

1 Linear
2 Parabolic
3 Cubic
4 Mixed
ELEment,UNSELect,MATerial,range
Deselect the elements by material range.
ELEment,UNSELect,NKTP,range
Deselect the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass

29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
43 3D Gap
45 3D Cable
46 3D Straight Pipe
47 3D Elbow
48 3D Translational Damper
49 2D Gap/Friction
50 3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer

ELEment,UNSELect,NONe

Select all elements.

ELEment,UNSELect,NOT

Invert element selection. Any selected elements initially invisible are plotted.
ELEment,UNSELect,NORDR,range
Deselect the elements by Node Order range.
ELEment,UNSELect,NSRL,range
Deselect the elements by nsrl range.
ELEment,UNSELect,PROPerty,range
Deselect the elements by property range.
ELEment,UNSELect,REVerse
Invert element selection. Any selected elements initially invisible are plotted.

ELEment,UNSELect,TYPE,range

Deselect the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
3D Translational Spring
2D Translational Spring
3D General Shell
3D Torsional Spring
2D Torsional Spring
2D Mass
3D Mass
2D General Mass
3D General Mass
2D Mass and Inertia
3D Mass and Inertia
3D Laminated Composite
3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
Axisymmetric shell
Axisymmetric shell with Non-Axisymmetric Loading
3D General Spring
3D General Beam
3D Thin Shell
3D Mixed Interpolation 8 Node General Shell
2D or Axisymmetric Gap
3D Gap
3D Cable
3D Straight Pipe
3D Elbow
3D Translational Damper
2D Gap/Friction
3D Gap/Friction
3D Solid for Heat Transfer
3D Thick Shell for Heat Transfer
3D Bar for Heat Transfer
3D Thin Shell for Heat Transfer
3D Convection Link for Heat Transfer
3D Radiation Link for Heat Transfer
ELEment,UNSELect,range
Deselect the elements by range.

ELEment,VISible,ALL

Plot all elements
ELEment,VISible,ASsociation,NODe
Plot elements by association with selected nodes
ELEment, VISible,ASsociation,NDISPlacements
Plot Elements by association with selected Nodal Displacements
ELEment, VISible,ASsociation,NFORce
Plot Elements by association with selected Forces
ELEment,VISible,ASsociation,NPRESSure
Plot Elements by association with selected Nodal Pressures
ELEment,VISible,ASsociation,PRESSure
Plot Elements by association with selected Pressures
ELEment,VISible,ASsociation,RIGidLink
Plot Elements by association with selected Rigid Links
ELEment, VISible,FORMulation,range

Plot the elements by formulation. The value of the integers in range are:-

Formulation	Description
1	Linear
2	Parabolic
3	Cubic
4	Mixed

ELEment,VISible,MATerial,range
Plot the elements by material range.
ELEment,VISible,NKTP,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam
40 3D Thin Shell
41 3D Mixed Interpolation 8 Node General Shell
42 2D or Axisymmetric Gap
43 3D Gap
45 3D Cable
46 3D Straight Pipe
47 3D Elbow
48 3D Translational Damper
49 2D Gap/Friction
50 3D Gap/Friction
104 3D Solid for Heat Transfer
105 3D Thick Shell for Heat Transfer
112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer

```
ELEment,VISible,NONe
Erase all elements
ELEment,VISible,NORDR,range
Plot the elements by Node Order range.
ELEment,VISible,NSRL,range
Plot the elements by NSRL range.
ELEment,VISible,PROPerty,range
Plot the elements by property range.
ELEment,VISible,TYPE,range
Plot the elements by element type range.
The element type is the NISA NKTP number and is as below:-
    Type Description
    1 2D Plane Stress Element
    2D Plane Stress Element
    3 Axisymmetric Solid Element
    4 3D Thick Solid Element
    5 3D Thick Shell Element
    7 3D Laminated Solid
    9 3D Hybrid Solid
    10 3D Membrane
    11 3D Tapered Beam
    12 3D Beam Element
    13 2D Beam Element
    14 3D Spar Element
    15 2D Spar
    17 3D Translational Spring
    18 2D Translational Spring
    20 3D General Shell
    21 3D Torsional Spring
    22 2D Torsional Spring
    25 2D Mass
    26 3D Mass
    27 2D General Mass
    28 3D General Mass
    29 2D Mass and Inertia
    30 3D Mass and Inertia
    32 3D Laminated Composite
    33 3D Laminated Sandwich (Honeycomb)
    34 Axisymmetric Solid with Non-Axisymmetric Loading
    36 Axisymmetric shell
    3 7 ~ A x i s y m m e t r i c ~ s h e l l ~ w i t h ~ N o n - A x i s y m m e t r i c ~ L o a d i n g ~
    38 3D General Spring
    39 3D General Beam
    40 3D Thin Shell
    4 1 ~ 3 D ~ M i x e d ~ I n t e r p o l a t i o n ~ 8 ~ N o d e ~ G e n e r a l ~ S h e l l
    4 2 ~ 2 D ~ o r ~ A x i s y m m e t r i c ~ G a p ~
    4 3 ~ 3 D ~ G a p
    4 5 ~ 3 D ~ C a b l e
    46 3D Straight Pipe
    4 7 ~ 3 D ~ E l b o w ~
    4 8 ~ 3 D ~ T r a n s l a t i o n a l ~ D a m p e r ~
    49 2D Gap/Friction
    50 3D Gap/Friction
    104 3D Solid for Heat Transfer
    105 3D Thick Shell for Heat Transfer
```

112 3D Bar for Heat Transfer
120 3D Thin Shell for Heat Transfer
149 3D Convection Link for Heat Transfer
150 3D Radiation Link for Heat Transfer
ELEment,VISible,SELected
Plot selected elements
ELEment,VISible,range
Plot element range.
GROup,ADD,SELected
Add selected elements to the current group.
GROup,DESELect,groupname
Deselect elements in group 'groupname'.
GROup,ERAse,groupname
Erase elements in 'groupname'
GROup,PLOt,groupname
Plot elements in group 'groupname'.
GROup,SELect,groupname
Select elements in group 'groupname'.
GROup,SETcurrent,groupname
Sets the current group as 'groupname'.
GROup,UNSELect,groupname
Deselect elements in group 'groupname'.
GROup,VISible,groupname
Plot elements in group 'groupname'.

2.2.14 Rigid Links

The following commands relate to Rigid Links
RIGidlink,ADD,linknumber,masternodenumber,UX,UY,UZ,MX,MY,MZ,slavenodenumbers
Adds Rigid Link number 'linknumber'. The master node number is 'masternodenumber'. The slave nodes are restrained in the $U X, U Y, U Z, M X, M Y$ and $M Z$ directions if a ' 1 ' is specified for each direction, and not if a ' 0 ' is specified. The rigid link has slave nodes specified by the comma separated 'slavenodenumbers' list. There must be at least 1 slave node for the link to be created.

It is not envisaged that this command will need to be used manually.
RIGidlink,COLour
Opens a dialogue box to specify the rigid link colour.
RIGidlink,COMPactids[,start,increment]
Compact Rigid Link ID's starting at the optional 'start', with an increment of 'increment'.
RIGidlink,DELete,ALL
Delete all Rigid Links.
RIGidlink,DELete,SELected
Delete selected Rigid Links
RIGidlink,DELete,range
Delete a range of Rigid Links
RIGidlink,DOF,UX,UY,UZ,MX,MY,MZ
Sets the degrees of freedom for the next Rigid Link added interactively. The slave nodes are restrained in the UX, UY, UZ, MX, MY and MZ directions if a ' 1 ' is specified for each direction, and not if a ' 0 ' is specified.

RIGidlink,ERAse,ALL
Erase all Rigid Links
RIGidlink,ERAse,NONe
Plot All Rigid Links
RIGidlink,ERAse,SELected
Erase selected Rigid Links
RIGidlink,ERAse,range
Erase all Rigid Links in 'range'
RIGigidink,INSPect
Starts the interactive Rigid Link inspection routine
RIGidlink,NODEReplace,rigidlinknumber,oldnodenumber,newnodenumber
Replace all instances of 'oldnodenumber' with 'newnodenumber' in Rigid Link 'rigidlinknumber'.
RIGidlink, PLOt,ALL
Plot all rigid links
RIGidlink, PLOt,NONe
Erase all rigid links
RIGidlink,PLOt,SELected
Plot all selected rigid links
RIGidlink,PLOt,range
Plot all rigid links in 'range'

RIGidlink,RENumber,old linknumber,newlinknumber
Renumber link with 'oldlinknumber' as 'newlinknumber'.
RIGidlink,SELect,ALL
Select all rigid links.
RIGidlink,SELect,NONe
Deselect all Rigid Links
RIGidlink,SELect, NOT
Invert Rigid Link Selection
RIGidlink,SELect,REVerse
Invert Rigid Link Selection
RIGidlink,SELect,range
Select all rigid links within 'range'
RIGidlink,UNSELect,ALL
Deselect all rigid links
RIGidlink,UNSELect,NONe
Select all rigid links
RIGidlink,UNSELect, NOT
Invert rigid link selection
RIGidlink,UNSELect,REVerse
Invert rigid link selection
RIGidlink,UNSELect,range
Deselect all rigid links within 'range'
RIGidlink,VISible,ALL
Plot all rigid links
RIGidlink,VISible,NONe
Erase all rigid links
RIGidlink,VISible,SELected
Plot all selected rigid links
RIGidlink,VISible,range
Plot all rigid links in 'range'

2.2.15 Analysis Titles

The following commands relate to the Analysis Titles.
TITLe,ADD,title
Replaces the current analysis title with 'title'
TITLe,CLEar
Clears the current analysis title.

2.2.16 Materials

The following commands relate to Materials.
MATErial,ADD,materialnumber,materialname,EX,EY,EZ,NUXY,NUXZ,NUYZ,GXY,GXZ,GYZ,DENS,FXT,FYT, FZT,FXC,FYC,FZC,FSXY,FSXZ,FSYZ,F12,F13,F23,FS,FTS,ALPX,ALPY,ALPZ,KXX,KYY,KZZ,C,isotropic

Add material 'materialnumber' with name 'materialname'.
$E X, E Y$ and $E Z$ are the Young's modulus in the X, Y and Z directions.
NUXY,NUXZ,NUYZ = Poisson's ratio in $X Y, X Z$ and $Y Z$ directions.
$G X Y, G X Z, G Y Z=$ Shear Moduli in $X Y, X Z$ and $Y Z$ directions.
DENS = Density.
FXT,FYT,FZT = Tensile failure stresses in X,Y and Z directions.
$F X C, F Y C, F Z C=$ Compressive failure stresses in X, Y and Z directions.
FSXY,FSXZ,FSYZ,F12,F13,F23,FS,FTS = shear failure stresses.
ALPX,ALPY,ALPZ = Thermal expansion co-efficients in X, Y and Z directions.
$K X X, K Y Y, K Z Z=$ Thermal Conductivities in X, Y and Z directions.
$C=$ Specific heat.
Isotropic $=$ flag to indicate whether isotropic. $1=$ isotropic, $0=$ orthotropic.
It is not envisaged that this command will need to be used manually.

MATErial,DELete,ALL

Delete all materials
MATErial,DELete,range
Delete all materials with material number within range.
MATErial,INSPect
Opens dialogue box to dynamically inspect materials.
MATErial,REPlace,materialnumber,materialname,EX,EY,EZ,NUXY,NUXZ,NUYZ,GXY,GXZ,GYZ,DENS,FXT,F YT,FZT,FXC,FYC,FZC,FSXY,FSXZ,FSYZ,F12,F13,F23,FS,FTS,ALPX,ALPY,ALPZ,KXX,KYY,KZZ,C,isotropic Replaces Material 'materialnumber' with new data.

It is not envisaged that this command will need to be used manually.

2.2.17 Laminations

The following commands relate to the NISA specific 'LAMInation Definition Sets'. Where a composite element is used, the element material does not refer directly to the normal material number, it refers to the Lamination Definition set. It is the lamination definition set that specifies the material number, fibre orientation number and thickness number of each layer. NISA knows to look in the right place for the laminated elements.

LAMInation,ADD,laminatenumber,fibreorientation,laminatename,\{propertynumber,lamanglenumber,materialnu mber\} repeated for each layer
Adds a lamination definition set. The set number is defined by 'laminatenumber'. The fibreorientation is defined by

0	$=$	Right Hand Rule about shell normal
1	$=$	RH rule about global Z axis, starting at global X axis.
2	$=$	RH rule about global X axis, starting at global Y axis.
3	$=$	RH rule about global Y axis, starting at global Z axis.
4	$=$	RH rule about shell normal, starting at projection of Global X axis on shell.
5	$=$	RH rule about shell normal, starting at projection of Global Y axis on shell.
6	$=$	RH rule about shell normal, starting at projection of Global Z axis on shell.
7	$=$	RH Rule about top surface normal.
8	$=$	RH Rule about mid surface normal.

For each layer \{propertynumber,lamanglenumber,materialnumber\} needs to be repeated.
For example:-

```
Lamination,Add,1,5,Two Layer Laminate,1,1,1,2,1,3
```

Is a two layer laminate, with number 1 , the zero degree fibre orientation is based on the RH rule, starting at the projection of the Global X axis on the shell. Later 1 has Property, Lamination Angle and Material numbers all set to 1. Layer 2 has thickness defined by Property 2, Lamination Angle set 1 and Material 3.

It is not envisaged that this command will need to be used manually.

LAMInation,DELete,ALL

Delete all laminates
LAMInation,DELete,range
Delete all laminates with laminate number within 'range'.
LAMInation,INSPect
Opens dialogue box to dynamically inspect lamination definition sets.

2.2.18 Lamination Angles

The following commands relate to the NISA specific 'LAMination Angle Definition Sets'.
LAMAngle,ADD,lamanglenumber,lamanglename,nodal angle data
Adds a lamination angle set with number 'lamanglenumber'. It has name 'lamanglename'. The angle at each specified node is given in 'nodal angle data'. The data is comma separated.

LAMAngle,DELete,ALL

Delete all lamination angles
LAMAngle,DELete,range
Delete all lamination angle sets within 'range'.

LAMAngle,INSPect

Opens dialogue box to dynamically inspect lamination angle sets.

2.2.19 Properties

These commands relate to properties. Properties are used for numerous different meanings. For mass elements, the property defines the mass and (if appropriate) inertia of the element. For Beams, the section properties are defined. For shells it's the section thickness at each node \&c.

PROPerty,ADD, propertynumber,property type,propertyname,propertydata
Add property number 'propertynumber' with property name 'propertyname'. The property data is specified as comma separated data values. The property type value is to be:-

0	=	Shell Nodal Thicknesses
1	$=$	3D Beam Section Properties
2	=	2D Beam Section Properties
3	=	2D Translational Spring
4	=	3D Translational Spring
5	=	Torsional Spring
6	=	General Spring
7	=	Mass
8	=	2D Mass/Inertia **NISA Only**
9	=	3D Mass/Inertia **NISA Only**
10	=	2D General Mass **NISA Only**
11	=	3D General Mass **NISA Only**
12	=	2D Gap
13	=	3D Gap
14	=	2D Spar
15	=	3D Spar/Strut
16	=	**For NISA Compatibility only ** 3D Cable
17	=	**For NISA Compatibility only ** 3D Damper
18	=	**For NISA Compatibility only ** 3D Elbow
19	=	**For NISA Compatibility only ** 3D Pipe
20	=	**For NISA Compatibility only ** 2D Gap/Friction
21	=	**For NISA Compatibility only ** 3D Gap/Friction
22	=	**For NISA Compatibility only ** 3D Thermal Bar
23	=	**For NISA Compatibility only ** 3D Convection Link
24	=	**For NISA Compatibility only ** 3D Radiation Link

PROPerty,DELete,ALL

Delete all properties.
PROPerty,DELete,range
Delete all properties with property number within 'range'
PROPerty,INSPect
Opens dialogue box to dynamically inspect properties.

2.2.20 Load Case Commands

The following commands relate to load case sets.
LCTItle, ADD,loadcasenumber,title
Add load case title 'title' to load case set 'loadcasenumber'.

LCTItle,DELete,ALL

Delete all load case titles.
LCTItle,DELete,range
Delete all load case titles with load case number within 'range'.
LOADcase,ADD,loadcasenumber,tsfree,tol,kelfr,krctn,kstr,kstn,lq1,lq2,lq7
Add load case number 'loadcasenumber'.
tsfree = Stress free temperature,
tol = tolerance for node point force unbalance printout.
Kelfr = element strain energy, element internal forces and rigid element forces calculation flag. $1=$ calculate, $0=$ do not calculate.
Krctn $=$ reaction force calculation flag. $1=$ calculate, $0=$ do not calculate.
Kstr = element stress calculation key. $0=$ Do not calculate. $1=$ at Gauss points only. 2 = at node points only. $3=$ at Gauss and node points. $4=$ at element centroid. $5=$ at Gauss points and centroid. 6 = at node points and centroid. $7=$ at Gauss, node points and centroid.
Kstn = element centroidal strain calculation flag. $1=$ calculate, $0=$ do not calculate.
Lq1 $=$ Element Stress printout key. $-1=$ do not print. $0=$ Print all. $1=$ print global components. $2=$ print principal and equivalent stresses (eg Von Mises). 3 = print local stresses only. 4 = print global, principal and equivalent stresses. $5=$ Print global and local stresses. $6=$ Print local, principal and equivalent stresses.
Lq2 = Average Nodal stresses. $0=$ do not print. $1=$ print global, principal and equivalent stresses. $2=$ print global stresses. $3=$ print principal and equivalent stresses. $4=$ calculate all, but do not print. Lq7 = displacement co-ordinate system. $0=$ print in local system at node if defined, and also in global system. 1 = print in global system only. 2 = print in local system at node if defined, or in global system if local system not defined at node.

LOADcase,AUTOadd,1/0

Specify whether to autocreate load case definitions when a boundary condition is defined. If $1=$ autocreate, 0 = do not autocreate.

LOADcase,DELete,ALL

Delete all load cases
LOADcase,DELete,range
Delete all load cases with load case number within 'range'.

LOADcase,INSPect

Opens dialogue box to dynamically inspect load case definition sets
LOADcase,SETtings,loadcasenumber,tsfree,tol,kelfr,krctn,kstr,kstn,lq1,lq2,lq7
Specify the default settings for the auto creation load case.

2.2.21 Nodal Displacements

The following commands relate to Nodal Displacements. The 'NDisp' of each command is derived from 'Nodal Displacement'.

NDISp,ADD

Opens a dialogue box to enable addition of nodal displacements to the currently selected nodes.
NDISp,ADD,nodenumber,loadcase,ux,uy,uz,mx,my,mz,uxdefined, uydefined,uzdefined,mxdefined,mydefined, mzdefined[,visible,selected]
Add a nodal displacement to node 'nodenumber' for load case 'loadcase'. The displacements are specified in ' $u x, u y, u z, m x, m y, m z$ '. Whether a displacement is applicable is defined by the Boolean value of
'uxdefined,uydefined, uzdefined, mxdefined,mydefined,mzdefined', where ' 1 ' is entered if the displacement is defined and ' 0 ' is entered if the displacement is not defined. The optional entries are 1 or 0 values indicating whether the displacement is to be visible or selected ($1=y$ ys, $0=n \mathrm{n}$). The default values if not specified are visible, but not selected.

For example:-

$$
\text { NDisp, Add, 1, 2, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, } 0
$$

Indicates that Node 1 is to be restrained in load case 2. The UX and UY displacements are 0.0. The UZ displacement is defined as 2.0 . My is also specified as 0.0 . The displacement is to be visible, but not selected.

It is not envisaged that this command will need to be used manually.
NDISp,DELete,ALL
Delete all nodal displacements
NDISp,DELete,SELected
Delete selected nodal displacements
NDISp,DELete, nodenumber,casenumber
Delete nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,ERAse,ALL
Erase all nodal displacements
NDISp,ERAse,ASSociation,NODe
Erase all nodal displacements associated with currently selected nodes. Any selected nodal displacements are deselected as they are erased.

NDISp,ERAse,ASSociation, ELEment
Erase all nodal displacements associated with currently selected elements. Any selected nodal displacements are deselected as they are erased.

NDISp,ERAse,CASe,range
Erase all nodal displacements with load case numbers within 'range'
NDISp,ERAse,INDividual,nodenumber,casenumber
Erase nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,ERAse,NODe,range
Erase all nodal displacements on nodes with nodenumbers within 'range'.
NDISp,ERAse,NONe
Plot all nodal displacements
NDISp,ERAse,SELected
Erase selected nodal displacements

NDISp,MODify,nodenumber,loadcase,ux,uy,uz,mx,my,mz,uxdefined,uydefined,uzdefined,mxdefined,mydefine d,mzdefined[,visible,selected]
Change a nodal displacement to node 'nodenumber' for load case 'loadcase'. The displacements are specified in 'ux,uy,uz,mx,my,mz'. Whether a displacement is applicable is defined by the Boolean value of 'uxdefined,uydefined,uzdefined,mxdefined,mydefined,mzdefined', where ' 1 ' is entered if the displacement is defined and ' 0 ' is entered if the displacement is not defined. The optional entries are 1 or 0 values indicating whether the displacement is to be visible or selected ($1=$ yes, $0=n o$). The default values if not specified are visible, but not selected.

For example:-
NDisp, Add, 1, 2, 0, 0, 2, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0
Indicates that Node 1 is to be restrained in load case 2. The UX and UY displacements are 0.0. The UZ displacement is defined as 2.0. My is also specified as 0.0 . The displacement is to be visible, but not selected.

Where a node is not constrained in the applicable loadcase, the node is ignored.
It is not envisaged that this command will need to be used manually.
NDISp,NODEReplace,oldnodenumber,newnodenumber,loadcasenumber,ux,uy,uz,mx,my,mz,uxdefined,uydefi ned,uzdefined,mxdefined,mydefined,mzdefined,visible,selected
Similar to NDISp,ADD, nodenumber... except that if the loadcase is found on 'oldnodenumber' then that is deleted and a nodal displacement is added on node 'newnodenumber'. If one or other node is not found, the operation has no consequence.

NDISp,PLOt,ALL

Plot all nodal displacements
NDISp,PLOt,ASSociation,NODe
Plot nodal displacements by association with currently selected nodes.
NDISp,PLOt,ASSociation, ELEment
Plot nodal displacements by association with currently selected elements.
NDISp,PLOt,CASe,range
Plot all nodal displacements with load case within 'range'.
NDISp,PLOt,INDividual, nodenumber,casenumber
Plot nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,PLOt,NODe,range
Plot nodal displacements with nodenumber within 'range'.

NDISp,PLOt,NONe

Erase all nodal displacements
NDISp,SELect,ALL
Select all nodal displacements
NDISp,SELect,ASSociation,NODe
Select nodal displacements by association with currently selected nodes.
NDISp,SELect,ASSociation,ELEment
Select nodal displacements by association with currently selected elements.
NDISp,SELect,CASe,range
Select all nodal displacements with load case within 'range'.
NDISp,SELect,INDividual, nodenumber,casenumber
Select nodal displacement on node 'nodenumber' for load case 'casenumber'.

NDISp,SELect,NODe,range
Select nodal displacements with nodenumber within 'range'.
NDISp,SELect,NONe
Deselect all nodal displacements
NDISp,SELect,NOT
Invert selection of nodal displacements
NDISp,SELect,REVerse
Invert selection of nodal displacements
NDISp,UNSELect,INDividual, nodenumber,casenumber
Deselect nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,VISible,ALL
Plot all nodal displacements

NDISp,VISible,ASSociation,NODe

Plot nodal displacements by association with currently selected nodes.
NDISp, VISible,ASSociation, ELEment
Plot nodal displacements by association with currently selected elements.
NDISp,VISible,CASe,range
Plot all nodal displacements with load case within 'range'.
NDISp,VISible,INDividual, nodenumber,casenumber
Plot nodal displacement on node 'nodenumber' for load case 'casenumber'.
NDISp,VISible,NODe,range
Plot nodal displacements with nodenumber within 'range'.
NDISp, VISible, NONe
Erase all nodal displacements

2.2.22 Pressures

The following commands relate to Pressures on element faces.

PRESsure,ADD

Opens a dialogue box to enable addition of pressures to the currently selected elements.
PRESsure,ADD, elementnumber,loadcase,facenumber,pressure[,visible,selected]
Add a pressure load to element 'elementnumber', face 'facenumber' for load case 'loadcase'. The pressure replaces any existing loads on the element face for the specified load case. The pressure value is 'pressure'. Visible and selected have value of 1 or 0 to indicate whether the force is to be visible or selected ($1=$ yes, $0=$ no). The default values if not specified are visible, but not selected.

For example:-
Pressure, Add, 1, 6, 2, 1.4e-1,1,0
Indicates that Element 1, face number 6 is to be loaded in load case 2. The pressure is $1.4 \mathrm{e}-1$. The pressure is to be visible, but not selected.

It is not envisaged that this command will need to be used manually.

PRESsure,DELete,ALL

Delete all pressure forces
PRESsure,DELete,SELected
Delete selected pressure forces
PRESsure,DELete,elementnumber,casenumber,facenumber
Delete nodal pressure force on element 'elementnumber' for load case 'casenumber'. The pressure deleted is the one applied to face 'facenumber'.

PRESsure,ERAse,ALL

Erase all pressure forces
PRESsure,ERAse,ASSociation,NODe
Erase all pressures associated with currently selected nodes. Any selected pressures are deselected as they are erased.

PRESsure,ERAse,ASSociation,ELEment
Erase all pressure forces associated with currently selected elements. Any selected forces are deselected as they are erased.

PRESsure,ERAse,CASe,range
Erase all pressure forces with load case numbers within 'range'
PRESsure,ERAse,INDividual,elementnumber,facenumber,casenumber
Erase pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,ERAse,ELEment,range
Erase all pressures on elements with element numbers within 'range'.

PRESsure,ERAse,NONe

Plot all nodal pressure forces
PRESsure,ERAse,SELected
Erase selected pressure forces

PRESsure,PLOt,ALL

Plot all pressure forces

PRESsure,PLOt,ASSociation,NODe

Plot pressure forces by association with currently selected nodes.
PRESsure,PLOt,ASSociation,ELEment
Plot pressure forces by association with currently selected elements.
PRESsure,PLOt,CASe,range
Plot all pressure forces with load case within 'range'.
PRESsure,PLOt,INDividual,elementnumber,facenumber,casenumber
Plot pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,PLOt,ELEment,range
Plot pressure forces with element number within 'range'.
PRESsure, PLOt,NONe
Erase all pressure forces
PRESsure,SELect,ALL
Select all pressure forces
PRESsure,SELect,ASSociation,NODe
Select pressure forces by association with currently selected nodes.
PRESsure,SELect,ASSociation,ELEment
Select pressure forces by association with currently selected elements.
PRESsure,SELect,CASe,range
Select all pressure forces with load case within 'range'.
PRESsure,SELect,INDividual,elementnumber,facenumber,casenumber
Select pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,SELect,ELEment,range
Select pressure forces with element number within 'range'.

PRESsure,SELect,NONe

Deselect all pressure forces
PRESsure,SELect,NOT
Invert selection of pressure forces
PRESsure,SELect,REVerse
Invert selection of pressure forces
PRESsure,UNSELect,INDividual,elementnumber,facenumber,casenumber
Deselect nodal pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.
PRESsure,VISible, ALL
Plot all pressure forces
PRESsure,VISible,ASSociation,NODe
Plot pressures by association with currently selected nodes.
PRESsure,VISible,ASSociation,ELEment
Plot pressure forces by association with currently selected elements.
PRESsure,VISible,CASe,range
Plot all pressure forces with load case within 'range'.

PRESsure,VISible,INDividual,elementnumber,facenumber,casenumber Plot pressure force on element 'elementnumber', face 'facenumber' for load case 'casenumber'.

PRESsure,VISible,NODe,range
Plot pressure forces with nodenumber within 'range'.
PRESsure,VISible,NONe
Erase all pressure forces

2.2.23 Nodal Pressures

The following commands relate to Nodal Pressures on nodes. The 'NPres' of each command is derived from 'Nodal Pressure'.

NPRESsure,ADD

Opens a dialogue box to enable addition of nodal pressures to the currently selected elements. This command is limited to shell elements only.

NPRESsure,ADD,nodenumber,loadcase,fx,fy,fz[,visible,selected]
Add a force representing a component of a nodal pressure load to node 'nodenumber' for load case 'loadcase'. The load is added to ay existing loads on the node for the specified load case. The forces are specified in 'fx,fy,fz'. Visible and selected have value of 1 or 0 to indicate whether the force is to be visible or selected ($1=$ yes, $0=n o$). The default values, if not specified, are visible but not selected.

For example:-
NPressure, Add, 1, 2, 20,10,2,1,0

Indicates that Node 1 is to be loaded in load case 2. The FX, FY and FZ forces are 20, 10 and 2. The force is to be visible, but not selected.

It is not envisaged that this command will need to be used manually.

NPRESsure,DELete,ALL

Delete all nodal pressure forces
NPRESsure,DELete,SELected
Delete selected nodal pressure forces
NPRESsure,DELete,nodenumber,casenumber
Delete nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,ERAse,ALL
Erase all nodal pressure forces. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,ASSociation,NODe

Erase all nodal pressure forces associated with currently selected nodes. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,ASSociation, ELEment
Erase all nodal pressure forces associated with currently selected elements. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,CASe,range
Erase all nodal pressure forces with load case numbers within 'range'. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,INDividual,nodenumber,casenumber
Erase nodal pressure force on node 'nodenumber' for load case 'casenumber'. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,NODe,range
Erase all forces on nodes with node numbers within 'range'. Any selected nodal pressure forces are deselected as they are erased.

NPRESsure,ERAse,NONe

Plot all nodal pressure forces
NPRESsure,ERAse,SELected
Erase selected nodal pressure forces. All selected nodal pressure forces are deselected as they are erased.
NPRESsure,PLOt,ALL
Plot all nodal pressure forces
NPRESsure,PLOt,ASSociation,NODe
Plot nodal pressure forces by association with currently selected nodes.
NPRESsure,PLOt,ASSociation,ELEment
Plot nodal pressure forces by association with currently selected elements.
NPRESsure,PLOt,CASe,range
Plot all nodal pressure forces with load case within 'range'.
NPRESsure,PLOt,INDividual, nodenumber,casenumber
Plot nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure, PLOt,NODe,range
Plot nodal pressure forces with nodenumber within 'range'.
NPRESsure,PLOt,NONe
Erase all nodal pressure forces
NPRESsure,SELect,ALL
Select all nodal pressure forces
NPRESsure,SELect,ASSociation,NODe
Select nodal pressure forces by association with currently selected nodes.
NPRESsure,SELect,ASSociation,ELEment
Select nodal pressure forces by association with currently selected elements.
NPRESsure,SELect,CASe,range
Select all nodal pressure forces with load case within 'range'.
NPRESsure,SELect,INDividual,nodenumber,casenumber
Select nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,SELect,NODe,range
Select nodal pressure forces with nodenumber within 'range'.
NPRESsure,SELect,NONe
Deselect all nodal pressure forces
NPRESsure,SELect,NOT
Invert selection of nodal pressure forces
NPRESsure,SELect,REVerse
Invert selection of nodal pressure forces
NPRESsure,UNSELect,INDividual,nodenumber,casenumber
Deselect nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,VISible,ALL
Plot all nodal pressure forces
NPRESsure,VISible,ASSociation,NODe
Plot nodal pressure forces by association with currently selected nodes.
NPRESsure,VISible,ASSociation,ELEment
Plot nodal pressure forces by association with currently selected elements.

NPRESsure,VISible,CASe,range
Plot all nodal pressure forces with load case within 'range'.
NPRESsure,VISible,INDividual, nodenumber,casenumber
Plot nodal pressure force on node 'nodenumber' for load case 'casenumber'.
NPRESsure,VISible,NODe,range
Plot nodal pressure forces with nodenumber within 'range'.
NPRESsure,VISible,NONe
Erase all nodal pressure forces

2.2.24 Forces

The following commands relate to Forces on nodes. The 'NForce' of each command is derived from 'Nodal Forces'.

NFORce,ADD

Opens a dialogue box to enable addition of forces to the currently selected nodes.
NFORce,ADD, nodenumber,loadcase,fx,fy,fz[,mx,my,mz,fxdefined,fydefined,fzdefined,mxdefined,mydefined,m zdefined,visible,selected]
Add a force to node 'nodenumber' for load case 'loadcase'. The forces are specified in ' $f x, f y, f z, m x, m y, m z$ '. Whether a force is applicable is defined by the Boolean value of 'uxdefined, uydefined, uzdefined, mxdefined, mydefined, mzdefined', where ' 1 ' is entered if the force is defined and ' 0 ' is entered if the force is not defined. Visible and selected have value of 1 or 0 to indicate whether the force is to be visible or selected ($1=$ yes, $0=$ no). The default values if not specified are visible, but not selected.

For example:-
NForce, Add, 1, 2, 20, 10, 2, 0, .01, 995e77,1,1,1,0,1,0,1,0
Indicates that Node 1 is to be loaded in load case 2. The FX, FY and FZ forces are 20, 10and 2. My is also specified as 0.01 . Despite a value being given for Mz , as mzdefined $=0$, no moment about the z axis is registered. The force is to be visible, but not selected.

Alternatively:-

```
NForce,Add,1, 2, 20,10,2
```

Indicates that Node 1 is to be loaded in load case 2. The FX, FY and FZ forces are 20, 10and 2.
It is not envisaged that this command will need to be used manually.

NFORce,DELete,ALL

Delete all forces
NFORce,DELete,SELected
Delete selected forces
NFORce,DELete,nodenumber,casenumber
Delete force on node 'nodenumber' for load case 'casenumber'.
NFORce,ERAse,ALL
Erase all forces
NFORce,ERAse,ASSociation,NODe
Erase all forces associated with currently selected nodes. Any selected forces are deselected as they are erased.

NFORce,ERAse,ASSociation,ELEment
Erase all forces associated with currently selected elements. Any selected forces are deselected as they are erased.

NFORce,ERAse,CASe,range
Erase all forces with load case numbers within 'range'
NFORce,ERAse,INDividual, nodenumber,casenumber
Erase force on node 'nodenumber' for load case 'casenumber'.
NFORce,ERAse,NODe,range
Erase all forces on nodes with node numbers within 'range'.

NFORce,ERAse,NONe

Plot all forces
NFORce,ERAse,SELected
Erase selected forces
NFORce,MODify,nodenumber,loadcase,fx,fy,fz[mx,my,mz,fxdefined,fydefined,fzdefined,mxdefined,mydefined ,mzdefined, visible,selected]
Modify the force to node 'nodenumber' for load case 'loadcase'. The forces are specified in 'fx,fy,fz,mx,my,mz'. Whether a force is applicable is defined by the Boolean value of 'uxdefined, uydefined, uzdefined, mxdefined, mydefined, mzdefined', where ' 1 ' is entered if the force is defined and ' 0 ' is entered if the force is not defined. Visible and selected have value of 1 or 0 to indicate whether the force is to be visible or selected ($1=$ yes, $0=$ no). The default values if not specified are visible, but not selected.

For example:-

$$
\text { NForce, Add, } 1,2,20,10,2,0, .01,995 \mathrm{e} 77,1,1,1,0,1,0,1,0
$$

Indicates that Node 1 is to be loaded in load case 2. The FX, FY and FZ forces are 20, 10and 2. My is also specified as 0.01 . Despite a value being given for Mz , as mzdefined $=0$, no moment about the z axis is registered. The force is to be visible, but not selected.

Alternatively:-
NForce, Add, 1, 2, 20, 10, 2
Indicates that Node 1 is to be loaded in load case 2. The FX, FY and FZ forces are 20, 10and 2.
Where nodes are not loaded in the model for the applicable loadcase, the load will not be applied
It is not envisaged that this command will need to be used manually.

NFORce,PLOt,ALL

Plot all forces
NFORce, PLOt,ASSociation,NODe
Plot forces by association with currently selected nodes.
NFORce,PLOt,ASSociation,ELEment
Plot forces by association with currently selected elements.
NFORce,PLOt,CASe,range
Plot all forces with load case within 'range'.
NFORce, PLOt,INDividual, nodenumber,casenumber
Plot force on node 'nodenumber' for load case 'casenumber'.
NFORce,PLOt,NODe,range
Plot forces with nodenumber within 'range'.

NFORce,PLOt,NONe

Erase all forces
NFORce,SELect,ALL
Select all forces
NFORce,SELect,ASSociation,NODe
Select forces by association with currently selected nodes.
NFORce,SELect,ASSociation,ELEment
Select forces by association with currently selected elements.

NFORce,SELect,CASe,range
Select all forces with load case within 'range'.
NFORce,SELect,INDividual, nodenumber,casenumber
Select force on node 'nodenumber' for load case 'casenumber'.
NFORce,SELect,NODe,range
Select forces with nodenumber within 'range'.
NFORce,SELect, NONe
Deselect all forces
NFORce,SELect,NOT
Invert selection of forces
NFORce,SELect,REVerse
Invert selection of forces
NFORce, UNSELect,INDividual,nodenumber,casenumber Deselect force on node 'nodenumber' for load case 'casenumber'.

NFORce,VISible,ALL
Plot all forces

NFORce,VISible,ASSociation,NODe
Plot forces by association with currently selected nodes.
NFORce,VISible,ASSociation, ELEment
Plot forces by association with currently selected elements.
NFORce,VISible,CASe,range
Plot all forces with load case within 'range'.
NFORce,VISible,INDividual,nodenumber,casenumber
Plot force on node 'nodenumber' for load case 'casenumber'.
NFORce,VISible,NODe,range
Plot forces with nodenumber within 'range'.
NFORce,VISible,NONe
Erase all forces

2.2.25 Accelerations

The following commands relate to accelerations. The 'BodyF' of each command is derived from 'Body Force'.
BODYForce,ADD, loadcasenumber,omegax,omegay,omegaz,accelx,accely,accelz,alphax,alphay,alphaz, xo,yo,zo
Add an acceleration to the model for load case 'loadcasenumber'. The linear accelerations are defined by 'accelx,accely,accelz'. For centrifugal accelerations the origin of the rotation is as 'xo,yo,zo'. The angular velocity is defined by 'omegax,omegay,omegaz' and the angular acceleration is defined by 'alphax,alphay,alphaz'.

It is not envisaged that this command will need to be used manually.

BODYForce,DELete,ALL

Delete all accelerations.
BODYForce,DELete,range
Delete all accelerations with load case number within 'range'
BODYForce,INSPect
Open a dialogue window to inspect the existing accelerations within the model.

2.2.26 Texture Mapping

The following commands relate to texture mapping.
ELEment,TEXturemap,ADD,ALL,left,bottom,right,top
Texture map all elements into area defined by the rectangle left,bottom,right,top. All values defining the rectangle must be between 0.0 and 1.0 eg

> ELE, TEXturemap, ADD, ALL, 0.0,0.0,1.0,1.0

ELEment,TEXturemap,ADD,SELected,left,bottom,right,top
Texture map selected elements into area defined by the rectangle left,bottom,right,top. All values defining the rectangle must be between 0.0 and 1.0.

ELEment,TEXturemap,BOX,ALL,left,bottom,right,top
Texture map all elements. The mapping is by means of creating an imaginary box around the model. All faces are then projected onto the appropriate face of the box, with the face normal being the vector that decides which box face the element face projects onto. The imaginary box is then unwrapped into area defined by the rectangle left,bottom,right,top while keeping all proportions consistent. All existing texturemapping is deleted and all existing texture nodes are deleted. All values defining the rectangle must be between 0.0 and 1.0 . eg

ELE, TEXturemap, BOX, ALL, 0.0,0.0,1.0,1.0
ELEment,TEXturemap,BOX,SELected,left,bottom,right,top
Texture map selected elements. The mapping is by means of creating an imaginary box around the selected nodes in the model. All faces are then projected onto the appropriate face of the box, with the face normal being the vector that decides which box face the element face projects onto. The imaginary box is then unwrapped into area defined by the rectangle left,bottom,right,top while keeping all proportions consistent. All values defining the rectangle must be between 0.0 and 1.0. Note: the mapping size and proportions WILL NOT be the same as if all faces were mapped at that time. All existing texture mapping on the element faces is deleted, but no texture nodes are deleted.

ELEment, TEXturemap,DELete,ALL

Delete texture mapping on all elements
ELEment,TEXturemap,DELete,FACe,elementnumber,facenumber,
Delete the texture mapping on element 'elementnumber', face 'facenumber'

ELEment,TEXturemap,DELete,SELected

Delete texture mapping on the selected elements.
ELEment,TEXturemap,FACe,elementnumber,facenumber,texturenodenumberlist....
Apply a texture map to element number 'elementnumber' and face 'facenumber'. The texture node numbers are specified in texturenodenumberlist .

TEXTURENodes,ADD,nodenumber, x, y
Add texture node 'nodenumber' at location x, y
TEXTURENodes,DELete,ALL
Delete texture mapping on all elements
TEXTURENodes,DELete, nodenumber
Delete texture node 'nodenumber'
TEXTURETemplate,SIZE, x, y
Sets the width of the texture template as ' x ', and the height as ' y '.

2.2.27 Miscellaneous

The following miscellaneous commands may be entered.

CLOSE

Closes the current modeller window.

EXIT

Leave the program.
EXPORT,OBJ,filename
Exports the nodes and element faces as a wavefront .obj model. Where texture mapping is defined, this is exported too.

EXPORT,MYSTRAN,filename

Export a MYSTRAN FE analysis file
EXPORT,NEU,filename
Export as much of the model as possible in EMRC's Display III Neutral Format. The write up on the format is limited, consequently it is not possible to export all the entities in the model.

EXPORT,NE2,filename

Export as much of the model as possible in EMRC's Display II Neutral Format. The format is limited, consequently it is not possible to export all the entities in the model.

EXPORT,NISA,filename
Export a NISA FE analysis file.

GROup,ADD,SELected

Add selected elements to the current group.
GROup,DESELect,groupname
Deselect elements in group 'groupname'.
GROup,ERAse,groupname
Erase elements in 'groupname'
GROup,PLOt,groupname
Plot elements in group 'groupname'.
GROup,SELect,groupname
Select elements in group 'groupname'.
GROup,SETcurrent,groupname
Sets the current group as 'groupname'.
GROup,UNSELect,groupname
Deselect elements in group 'groupname'.
GROup,VISible,groupname
Plot elements in group 'groupname'.

HELP

Opens the help file, an action which won't help, because help files never do.
IMPORT,DXF,filename
Imports AutoCAD .dxf file 'filename'. New file is merged with existing model.
IMPORT,GEO,filename
Imports COSMOSWorks .geo file 'filename'. New file is merged with existing model.

IMPORT,OBJ,filename
Imports Wavefront .obj file 'filename'. New file is merged with existing model.
IMPORT,RADioss,filename
Imports Radioss .rad file 'filename'. New file is merged with existing model.
IMPORT,STL,filename
Imports Stereo Lithography .stl file 'filename'. New file is merged with existing model.
LAYer, ADD, SELected
Add selected entities to the current layer.
LAYer,DESELect,layername
Deselect all entities on layer 'layername'.
LAYer,ERAse,layername
Erase all entities on layer 'layername'.
LAYer,PLOt,layername
Plot all entities on layer 'layername'.
LAYer,SELect,layername
Select all entities on layer 'layername'
LAYer,SETcurrent,layername
Sets the current layer as 'layername'.
LAYer,UNSELect,layername
Deselect all entities on layer 'layername'.
LAYer,VISible,layername
Plot all entities on layer 'layername'.
OPEN,filename
Opens file 'filename' in the modeller. The existing model is overwritten. May open the following file types:-
AutoCAD drawing exchange files (.dxf)
Modeller Data files (.mdf)
Modeller Session files (.msf)
NISA Input Files (.nis)
QUIT
Leave the program.

STATUS

Opens a dialogue window to dynamically inspect information about the model.

STOP

Stops the current action. Probably. Well, occasionally. Some sections of the program are written to permit interruptions and simulate multi tasking - but not all as it introduces a processor overhead and slows the program down. If the program permits you to type 'STOP' while an action is occurring, then it can be stopped. However, as the PC will be operating at very high processor utilisation rates and will react very slowly to typing 'stop'. It is a last resort if something is taking an absurd length of time and should only be tried just before stopping the process with 'Ctrl-Alt-Delete'.

2.2.2 Commands to fix bugs

The following commands may be entered to try to repair the model if bugs have been found to corrupt the model (like not being able to snap to line midpoints because the midpoint has been calculated in the wrong place).

LINe,CALculate,MIDPOINTS

Calculates midpoints on all lines. This is a remedial function to help, in the event of a bug, if lines have their mid points calculated in the wrong place.

SURface,CALculate,NORmalcentroid
Recalculates the surface normal and centroid in the event of a bug causing the information to be out of date.

ELEment,CALculate,CENtroid

Recalculates the element face centroid and centroid in the event of a bug causing the information to be out of date.

ELEment,CALculate,NORmal

Recalculates the element normal, in the event of a bug causing the information to be out of date.
ELEment,CALculate,NORmalcentroid
Recalculates the element normal, face centroid and centroid in the event of a bug causing the information to be out of date.

ELEment,CENtroid,RECalculate
Recalculates the element centroids. Intended to correct an error in element copy/move operations if the elements cannot be subsequently selected. In a program with no bugs, this will be redundant.

ELEment,REPair,NORDR

Run through all the elements and, based on the numbers of nodes in the element and the element type, sets the Node Order. This can be useful after a difficult to repair bug occurs.

ELEment,REPair,NSRL

Recalculates all the element NSRL numbers based on the element Node Order and Type. This can be useful after a difficult to repair bug occurs.

3. Menu Command Reference

3.1 General Information

This menu command reference identifies all the menu commands in the Chestnut Pens Modelling Studio. All the entries are in the order found in their respective menus, rather than alphabetically.

Each menu item is prefaced by its menu path. So 'View| Plot| Displacement Constraints| All' may be found by going to the 'View' menu, 'Plot' submenu, 'Displacement Constraints' sub-submenu and selecting the 'All' menu item.

Many menu commands require an additional range to be entered so that the selection/ plotting etc. may be applied to a limited range of entities. Where a range is specified it's possible to use various delimiters. More than one integer may be specified separated by commas or slashes. Also a consecutive range may be indicated by a '-' or a 't'. In consecutive ranges make sure that the first number is smaller than the second.

For example:-
Node, Delete, 2/4,1,7t9,15-19
Indicates that nodes $1,2,4,7,8,9,15,16,17,18 \& 19$ are to be deleted, whereas the following:-
Node, Delete, 19-15
Is not acceptable.

3.2 Menu List

The following menu items are categorised:-
3.2.1 File Menu
.109
3.2.2 Edit Menu .. 111
3.2.3 View Menu ... 114

View| Plot Menu ... 114
View| Erase Menu ... 124
View| Zoom Menu .. 134
View| Angle Menu .. 134
View| Perspective Menu.. 135
View| Display Options Menu ... 136
View| Colours Menu ... 139
View| Labels Menu... 144
View| Light Source Menu .. 145
View| Layers Menu... 146
View| Groups Menu... 149
View| Status .. 152
3.2.4 Selection Menu .. 153
3.2.5 Geometry Menu .. 164
3.2.6 FE Model Menu.. 174

FE Model| Executive Commands... 174
FE Model| Nodes .. 177
FE Model| Elements ... 180
FE Model| Rigid Links .. 194
FE Model| Analysis Title.. 196
FE Model| Material .. 197
FE Model| Laminations ... 200
FE Model| Lamination Angles .. 203
FE Model| Properties ... 205
FE Model| Load Case .. 214
FE Model| Displacement Constraints... 217
FE Model| Pressures 219
FE Model| Nodal Pressures 221
FE Model| Forces 223
FE Model| Accelerations 225
FE Model| Load Combiner 227
FE Model| Analysis Readiness Check 229
3.2.7 Mapping Menu 231
3.2.8 Window Menu 236
3.2.9 Help Menu 237
3.2.10 Pop-up menu over model Viewport 238

3.2.1 File Menu

The following menu items are found in the 'File' menu.

'File| New'

'File| New| Text Editor'

Creates a new text editor. It forms a basic word processor that can cope with text or Rich Text Files. If the file is plain text, the text size is unlimited. For a Rich Text File, the maximum size is 64 K as the MS Common Controls .dll found in Windows XP imposes that limit on the file size. For a full description of the text editor's functions, see the help file attached to the program.

'File| New| Modeller'

Opens a new Modelling Studio window.

'File| New| Bolt Group Analysis'

Opens a new Bolt Group Analysis window. The Bolt Group analysis is outside the remit of this command reference, but it is fully explained in the program help file.

'File| Open'

Open a file. The file may be one of a number of extensions. Where an option is possible, a dialogue window will open asking what is to be the destination tool. If the Modelling Studio is an option - select that!

[r Select the Tool to be used to Open the File

File to be Opened = D:Epsds646\}3U1_h.nis

```
Tool Type
`Model Verification
CNISA to DXF Conversion
^NISA to Wavefront OBJ Conversion
`NISA to Stereo Lithography STL Conversion
~NISA to MS DirectXConversion
CBolt Group Analysis
cModelling Studio
CText Editor
```

OK Cancel Help

'File| Save'

Saves the current modelling studio model with the filename shown in the window frame. This will always end in .mdf for 'Modeller Data File'. The file is in a proprietary binary data format. The format is fixed so that files will always be backwards and forwards compatible. Later versions of the Modelling Studio will simply extend the data structure, and will retain all existing structures.

'File| Save As'

Saves the current modelling studio model with a user entered filename. This will always end in .mdf for 'Modeller data file'. The file is in a proprietary binary data format. The format is fixed so that files will always be backwards and forwards compatible. Later versions will simply extend the data structure, and will retain all existing structures.

'File| Import'

Allows the importation of a Wavefront .obj file, COSMOSWorks .geo file, Stereo Lithography .stl file or a DXF file. See the 'User Guide' for a full description of all supported commands.

'File| Export'

Allows the export of a Wavefront .obj file (nodes, elements and texture mapping), NISA .nis analysis file, MYSTRAN .dat analysis file. Parts of the model may also be exported as a Display III session file, a Display III .neu file, Display II .ne2 file, Ascii Stereo Lithography file or a basic DXF file. No export format is capable of supporting the full capabilities of the Modelling Studio. See the 'User Guide' for a full description of all supported commands.

'File| Merge'

Merge another modeller data file into the existing file. All references are kept consistent so that no part of the merged model over-writes any part of the existing model.

'File| File Preferences'

'File| File Preferences| Import: Rotate Geo File About X axis'

This option, if set, automatically rotates a COSMOSWorks file by $+90^{\circ}$ about the X axis to take into account the fact that SolidWorks has the Y Axis as the vertical up axis rather than the Z axis. The option is persistent and will affect the way a .geo file is opened even before a Modelling Studio is opened.

'File| File Preferences| Import: STL as FE Entities'

This option, if set, imports a Stereo Lithography (stl) file as elements and nodes. If not set, the file is opened as Points, Lines and Surfaces. The option is persistent and will affect the way a .stl file is opened even before a Modelling Studio is opened.

'File| Print'

Prints the contents of the Progress Information Box.

'File| Printer Setup'

Enables the user to configure the printer.

'File| Send'

Send the existing .mdf file as an e-mail attachment. This is occasionally difficult, depending on how rigorous the e-mail application is at complying with Microsoft standards. Consequently it is not usually possible to send the model directly as an attachment if MS Outlook 2003 is the e-mail provider. (Microsoft rules are for other people to follow, not Microsoft..).

'File| Exit'

Leave the program.
'File| Quick List'
List of previously opened files to speed file opening. The number of possible files listed can be altered by using 'Edit| Preferences...' and choosing the 'Quick List' tab. The maximum number of files is 10. If you need more (and there seems no reason why you should!), edit the .ini file in the program directory so that the QuickListLength under [Preferences] reads:-

```
[Preferences]
QuickListLength=[enter new number here]
```


3.2.2 Edit Menu

The following menu items are found in the 'Edit' menu. The 'Edit' menu is not used a great deal in creating a model.

'Edit| Undo'

Undo the previous operation. Due to the programming effort involved, not all operations can be undone at the time of writing this command reference. Check the Status Bar hint for the name of the command that would be undone.

When an undo event executes, a session file is run through the command line (for a full explanation of this see the 'Understanding Undo's' How to... Guide in the 'User Guide'). Several thousand command line commands may make up a single undo event. If the undo event takes too long to execute, press the 'Esc' key to abort the undo event.

Edit| Undo History Length'

Sets the number of undo events that can be stored. The setting is persistent, and is initially 20 . The longer the undo history, the more memory is taken up.

'Edit| Cut'

Deletes selected entities.

'Edit| Copy'

Copies selected entities for on-screen translation.

'Edit| Paste'

Pastes text from clipboard into the Progress Information Box.

'Edit| Select All'

Selects all Points, Lines, Surfaces, Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures and Forces.
'Edit| Font'
Changes the font used for the labels in the Viewport.

'Edit| Word Wrap'

Permits lines to wrap in the Progress Information box.

'Edit| Text Style'

'Edit| Text Style| Bold'

Sets the text to bold at the current cursor position in the Progress Information box.
'Edit| Text Style| Itallics'
Sets the text to itallics at the current cursor position in the Progress Information box.

'Edit| Text Style| Underline'

Sets the text to underline at the current cursor position in the Progress Information box.

'Edit| Text Style| Strikeout'

Sets the text to strikeout at the current cursor position in the Progress Information box.

'Edit| Text Alignment'

'Edit| Text Alignment | Left'

Sets the text alignment to left justified at the current cursor position in the Progress Information box.

'Edit| Text Alignment | Centre'

Sets the text alignment to centre justified at the current cursor position in the Progress Information box.

'Edit| Text Alignment | Right'

Sets the text alignment to right justified at the current cursor position in the Progress Information box.

'Edit| Text Case'

'Edit| Text Case| UPPER CASE'
Changes the selected text in the Progress Information box to UPPER CASE.

'Edit| Text Case| Lower case'

Changes the selected text in the Progress Information box to lower case.

'Edit| Text Case| Initial Capitals'

Changes the selected text in the Progress Information box to Initial Capitals.

'Edit| Spell Check'

Spell checks the Progress Information box.
'Edit| Find'
Finds text in the Progress Information box.

'Edit| Replace'

Finds and replaces text in the Progress Information box.

'Edit| Statistics'

Opens a dialogue window to dynamically inspect information about the model.

The dialogue data may be copied to the clipboard by right clicking over the data grid and selecting pop-up menu option 'Copy to Clipboard'. The data is Tab separated on the clipboard.
'Edit| Goto Line..'
Opens a dialogue window to enter the text line in the Progress Information box to jump to.

'Edit| Preferences'

Opens a dialogue window to specify the general program preferences. No preferences directly affect the Modelling Studio tool.

'Edit| Delete Session Files'

Delete all session files in the program directory except the session file for the current model.

'Edit| Toolbars'

View/erase text editing toolbars. Only the Edit toolbar is of any applicability to the modeller. The rest may be turned off without detriment to modelling. All the toolbars (except the modelling toolbar) may be pulled into floating toolbars and positioned around the screen should it be desired.

3.2.3 View Menu

The following menu items are found in the 'View' menu.

```
`View/ Plot'
    'View| Plot| All'
    Plot all Points, Lines, Surfaces, Nodes, Elements, Rigid Links, Displacement Constraints,
    Pressures, Nodal Pressures and Forces.
    'View| Plot| All Geometry'
    Plot all Points, Lines, Surfaces and Solids.
    'View| Plot| All FE Model'
    Plot all Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures
    and Forces.
    'View| Plot| All Boundary Conditions'
            'View| Plot| All Boundary Conditions| All'
            Plot all Displacement Constraints, Pressures, Nodal Pressures and Forces.
            'View| Plot| All Boundary Conditions| Range by Case Number'
            Plot all Displacement Constraints, Pressures, Nodal Pressures and Forces in a range of load
            cases. Typed input of the range is necessary in the command line.
`View| Plot| Points'
            'View| Plot| Points| All'
            Plot all Points.
            'View| Plot| Points| Selected'
            Plot selected Points.
                'View| Plot| Points| Range'
            Plot Points within range. Typed input of the range is necessary in the command line.
            'View| Plot| Points| Selected Lines'
            Plot Points by association with selected Lines.
            'View| Plot| Points| Selected Surfaces'
            Plot Points by association with selected Surfaces.
            'View| Plot| Points| Selected Solids'
            Plot Points by association with selected Solids.
                    `View| Plot| Lines'
            'View| Plot| Lines| All'
            Plot all Lines.
            'View| Plot| Lines| Selected'
            Plot selected Lines.
            `View| Plot| Lines| Range'
            Plot Lines within range. Typed input of the range is necessary in the command line.
            'View| Plot| Lines| Selected Points'
            Plot Lines by association with selected Points.
            'View| Plot| Lines| Selected Surfaces'
            Plot Lines by association with selected Surfaces.
            'View| Plot| Lines| Selected Solids'
            Plot Lines by association with selected Solids.
```


'View| Plot| Surfaces'

'View| Plot| Surfaces| All'
Plot all Surfaces.
'View| Plot| Surfaces| Selected'
Plot selected Surfaces.
'View| Plot| Surfaces| Range'
Plot Surfaces within range. Typed input of the range is necessary in the command line.

'View| Plot| Surfaces| Selected Points'

Plot Surfaces by association with selected Points.
'View| Plot| Surfaces| Selected Lines'
Plot Surfaces by association with selected Lines.
'View| Plot| Surfaces| Selected Solids'
Plot Surfaces by association with selected Solids.

'View| Plot| Nodes'

'View| Plot| Nodes| All'
Plot all Nodes.
'View| Plot| Nodes| Selected'
Plot selected Nodes.
'View| Plot| Nodes| Range'
Plot Nodes within range. Typed input of the range is necessary in the command line.
'View| Plot| Nodes| Selected Elements'
Plot Nodes by association with selected Elements.
'View| Plot| Nodes| Selected Rigid Links'
Plot Nodes by association with selected Rigid Links.
'View| Plot| Nodes| Selected Displacements'
Plot Nodes by association with selected Displacement Constraints.
'View| Plot| Nodes| Selected Pressures'
Plot Nodes by association with selected Pressures.
'View| Plot| Nodes| Selected Nodal Pressures'
Plot Nodes by association with selected Nodal Pressures.
'View| Plot| Nodes| Selected Forces'
Plot Nodes by association with selected Forces.

'View| Plot| Elements'

'View| Plot| Elements| All'
Plot all Elements.
'View| Plot| Elements| Selected'
Plot selected Elements.
'View| Plot| Elements| Range'
Plot Elements within range. Typed input of the range is necessary in the command line.
'View| Plot| Elements| by Material'
Plot Elements with material number in range. Selection of the element material range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'View| Plot| Elements| by Property'
Plot Elements with property number in range. Selection of the element property range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'View| Plot| Elements| by Element Type'
Plot Elements with element type number in range. Selection of the element type range is necessary, from a list of options. This is carried out in a dialogue window as below:-

The element type number is from the list below:-

Type Description

1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30
3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam

40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction
50	3D Gap/Friction
104	3D Solid for Heat Transfer
105	3D Thick Shell for Heat Transfer
112	3D Bar for Heat Transfer
120	3D Thin Shell for Heat Transfer
149	3D Convection Link for Heat Transfer
150	3D Radiation Link for Heat Transfer

‘View| Plot| Elements| by NSRL

Plot Elements with NSRL number in range. The NSRL of the elements to be plotted is selected from a list of Serial Numbers generated for the current model. The selection list may be similar to the list below:-

'View| Plot| Elements| by NORDR'

Plot Elements with Node Order number in range. Selection of the Node Order is from a list as below:-

[^1]'View| Plot| Elements| by Formulation'
Plot Elements with formulation number in range. Selection of the formulation range is necessary from a selection list, as below:-

The element formulation is as below:-
Formulation Description
$0 \quad$ Undefined - for selecting damaged elements prior to deletion.
1 Linear
2 Parabolic
3 Cubic
4 Mixed

'View| Plot| Elements| Selected Nodes'

Plot Elements by association with selected Nodes.
'View| Plot| Elements| Selected Rigid Links'
Plot Elements by association with selected Rigid Links.
'View| Plot| Elements| Selected Displacements'
Plot Elements by association with selected Displacement Constraints.
'View| Plot| Elements| Selected Pressures'
Plot Elements by association with selected Pressures.
'View| Plot| Elements| Selected Nodal Pressures'
Plot Elements by association with selected Nodal Pressures.
'View| Plot| Elements| Selected Forces'
Plot Elements by association with selected Forces.
'View| Plot| Elements| Plot by Group Name'
Opens a dialogue window to choose the element group name to plot.

'View| Plot| Rigid Links'

'View| Plot| Rigid Links| All'
Plot all Rigid Links.
'View| Plot| Rigid Links| Selected'
Plot selected Rigid Links.
'View| Plot| Rigid Links| Range'
Plot Rigid Links within range. Typed input of the range is necessary in the command line.

'View| Plot| Displacement Constraints'

'View| Plot| Displacement Constraints| All'
Plot all Displacement Constraints.
'View| Plot| Displacement Constraints| Range by Node Association'
Plot Displacement Constraints by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
'View| Plot| Displacement Constraints| Range by Case Number'
Plot Displacement Constraints by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
'View| Plot| Displacement Constraints | Selected Nodes'
Plot Displacement Constraints by association with selected Nodes.
'View| Plot| Displacement Constraints | Selected Elements'
Plot Displacement Constraints by association with selected Elements.

'View| Plot| Pressures'

'View| Plot| Pressures| All'
Plot all Pressures.
'View| Plot| Pressures| Range by Element Association'
Plot Pressures by association with a range of element numbers. Typed input of the element number range is necessary in the command line.
'View| Plot| Pressures| Range by Face Association'
Plot Pressures by association with a range of element face numbers. Typed input of the element face number range is necessary in the command line.
'View| Plot| Pressures| Range by Case Number'

Plot Pressures by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
'View| Plot| Pressures| Selected Nodes'
Plot Pressures by association with selected Nodes.
'View| Plot| Pressures| Selected Elements'
Plot Pressures by association with selected Elements.

'View| Plot| Nodal Pressures'

'View| Plot| Nodal Pressures| All'
Plot all Nodal Pressures.
'View| Plot| Nodal Pressures| Range by Node Association'
Plot Nodal Pressures by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
'View| Plot| Nodal Pressures| Range by Case Number'
Plot Nodal Pressures by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
'View| Plot| Nodal Pressures| Selected Nodes'
Plot Nodal Pressures by association with selected Nodes.
'View| Plot| Nodal Pressures| Selected Elements'
Plot Nodal Pressures by association with selected Elements.
'View| Plot| Forces'
'View| Plot| Forces| All'
Plot all Forces.
'View| Plot| Forces| Range by Node Association'
Plot Forces by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
'View| Plot| Forces| Range by Case Number'
Plot Forces by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
'View| Plot| Forces| Selected Nodes'
Plot Forces by association with selected Nodes.
'View| Plot| Forces| Selected Elements'
Plot Forces by association with selected Elements.

'View| Plot| Plot by Layer Name'

Opens a dialogue box to select the layers to plot.

'View| Plot| Refresh'

Refreshes the view. This is useful when creating surfaces as each new surface is drawn over the top of the existing model regardless of whether it should be obscured by other entities. This refreshes the plot and shuffles all entities into their correct depth order.

'View| Plot| Shaded View'

Determines whether shading of the plotted entities is carried out. The default is 'ON' as this enables depth shading, infinite light shading etc.

'View| Erase

'View| Erase| All'
Erase all Points, Lines, Surfaces, Solids, Nodes, Elements, Rigid Links, Displacement
Constraints, Pressures, Nodal Pressures and Forces.
'View| Erase| All Geometry'
Erase all Points, Lines, Surfaces and Solids.
'View| Erase| All FE Model'
Erase all Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures and Forces.

'View| Erase| All Boundary Conditions'

'View| Erase| All Boundary Conditions| All'
Erase all Displacement Constraints, Pressures, Nodal Pressures and Forces.
'View| Erase| All Boundary Conditions| Range by Case Number'
Erase all Displacement Constraints, Pressures, Nodal Pressures and Forces in a range of load cases. Typed input of the range is necessary in the command line.

```
'View| Erase| Points'
'View| Erase| Points| All'
Erase all Points.
```

'View| Erase| Points| Selected'
Erase selected Points.
'View| Erase| Points| Range'
Erase Points within range. Typed input of the range is necessary in the command line.
'View| Erase| Points| Selected Lines'
Erase Points by association with selected Lines.
'View| Erase| Points| Selected Surfaces'
Erase Points by association with selected Surfaces.
'View| Erase| Points| Selected Solids'
Erase Points by association with selected Solids.
'View| Erase| Lines'
'View| Erase| Lines| All'
Erase all Lines.
'View| Erase| Lines| Selected'
Erase selected Lines.
'View| Erase| Lines| Range'
Erase Lines within range. Typed input of the range is necessary in the command line.
'View| Erase| Lines| Selected Points'
Erase Lines by association with selected Points.
'View| Erase| Lines| Selected Surfaces'
Erase Lines by association with selected Surfaces.
'View| Erase| Lines| Selected Solids'
Erase Lines by association with selected Solids.

[^2]'View| Erase| Elements| by Material'
Erase Elements with material number in range. Selection of the element material range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'View| Erase| Elements| by Property'
Erase Elements with property number in range. Selection of the element property range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'View| Erase| Elements| by Element Type'
Erase Elements with element type number in range. Selection of the element type range is necessary, from a list of options. This is carried out in a dialogue window as below:-

The element type number is from the list below:-

Type Description

1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14 3D Spar Element
15 2D Spar
17 3D Translational Spring
18 2D Translational Spring
20 3D General Shell
21 3D Torsional Spring
22 2D Torsional Spring
25 2D Mass
26 3D Mass
27 2D General Mass
28 3D General Mass
29 2D Mass and Inertia
30 3D Mass and Inertia
32 3D Laminated Composite
33 3D Laminated Sandwich (Honeycomb)
34 Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
37 Axisymmetric shell with Non-Axisymmetric Loading
38 3D General Spring
39 3D General Beam

40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction
50	3D Gap/Friction
104	3D Solid for Heat Transfer
105	3D Thick Shell for Heat Transfer
112	3D Bar for Heat Transfer
120	3D Thin Shell for Heat Transfer
149	3D Convection Link for Heat Transfer
150	3D Radiation Link for Heat Transfer

'View| Erase| Elements| by NSRL'

Erase Elements with NSRL number in range. The NSRL of the elements to be erased is selected from a list of Serial Numbers generated for the current model. The selection list may be similar to the list below:-

'View| Erase| Elements| by NORDR'

Erase Elements with Node Order number in range. Selection of the Node Order is from a list as below:-

[^3]'View| Erase| Elements| by Formulation'
Erase Elements with formulation number in range. Selection of the formulation range is necessary from a selection list, as below:-

Formulation is as below:-
Formulation Description
1 Linear
2 Parabolic
$3 \quad$ Cubic
4 Mixed
'View| Erase| Elements| Selected Nodes'
Erase Elements by association with selected Nodes.
'View| Erase| Elements| Selected Rigid Links'
Erase Elements by association with selected Rigid Links.

'View| Erase| Elements| Selected Displacements'

Erase Elements by association with selected Displacement Constraints.
'View| Erase| Elements| Selected Pressures'
Erase Elements by association with selected Pressures.
'View| Erase| Elements| Selected Nodal Pressures'
Erase Elements by association with selected Nodal Pressures.
'View| Erase| Elements| Selected Forces'
Erase Elements by association with selected Forces.
'View| Erase| Elements| Erase by Group Name'
Opens a dialogue window to choose the element group name to Erase.

[r Erase Group			$\square \square \times$		
Group Number	Group Name			人	
0	Group 0				
1	hip				
2	abdomen				
3	chest			\checkmark	
OK		Erase	Help		

'View| Erase| Rigid Links'

'View| Erase| Rigid Links| All'
Erase all Rigid Links.
'View| Erase| Rigid Links| Selected'
Erase selected Rigid Links.
'View| Erase| Rigid Links| Range'
Erase Rigid Links within range. Typed input of the range is necessary in the command line.

'View| Erase| Displacement Constraints'

'View| Erase| Displacement Constraints| All'
Erase all Displacement Constraints.
'View| Erase| Displacement Constraints| Selected'
Erase selected Displacement Constraints.
'View| Erase| Displacement Constraints| Range by Node Association'
Erase Displacement Constraints by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
'View| Erase| Displacement Constraints| Range by Case Number'
Erase Displacement Constraints by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
'View| Erase| Displacement Constraints | Selected Nodes'
Erase Displacement Constraints by association with selected Nodes.
'View| Erase| Displacement Constraints | Selected Elements'
Erase Displacement Constraints by association with selected Elements.

'View| Erase| Pressures'

'View| Erase| Pressures| All'
Erase all Pressures.
'View| Erase| Pressures| Selected'
Erase selected Pressures.
'View| Erase| Pressures| Range by Element Association'
Erase Pressures by association with a range of element numbers. Typed input of the element number range is necessary in the command line.

[^4]

'View| Zoom'

'View| Zoom| All'
Zoom to the extents of the currently displayed entities (which may be smaller than the full model).

'View| Zoom| Previous'

Zoom to the previous model view. When the 'Zoom| All' menu command is used or the model is rotated, the zoom history is cleared so it is not possible to go to the previous view.
'View| Zoom| In'
Zoom in to the model and increase the size of the view by 15%.

'View| Zoom| Out'

Zoom out from the model and decrease the size of the view by 15%.
'View| Zoom| Area'
Zoom to an area of the model by dragging a rectangle over a section of the Viewport.

'View| Angle'

'View| Angle| Front'
View the front of the model, along the +Y axis.
'View| Angle| Back'
View the back of the model along the -Y axis.

'View| Angle| Left'

View the left side of the model along the +X axis.

'View| Angle| Right'

View the right side of the model along the -X axis.

'View| Angle| Top'

View the top of the model along the $-Z$ axis.

'View| Angle| Bottom'

View the bottom of the model along the $+Z$ axis.

'View| Angle| Iso 1'

View the Iso 1 view of the model.
'View| Angle| Iso 2'
View the Iso 1 view of the model.

'View| Angle| Iso 3'

View the Iso 1 view of the model.
'View| Angle| Iso 4'
View the Iso 1 view of the model.

'View| Angle| User Defined'

Open a dialogue box to specify the viewing angle.

'View| Angle| Fly Around'

Fly around the model. The view starts at Rot $X=-45$ degrees, Rot $Z=0$. The Z rotation is increased 15 degrees every 2 seconds. After each complete rotation about the Z axis, the X axis rotation is decreased by 15 degrees until it reaches - 135 , whereupon the view goes back to Rot X $=-45$ degrees. Press any key to abort the fly-around view.

'View| Perspective'

'View| Perspective| None'
No perspective effects are applied to the model view in the Viewport. As shown below:-

'View| Perspective| Wide Angle Lens'
Strong perspective effects to simulate a wide angle lens are applied to the model view in the Viewport. As shown below, this is from the same angle of view as the zero perspective view above.

'View| Perspective| Standard Lens'
Medium strength perspective effects to simulate a standard lens are applied to the model view in the Viewport.
'View| Perspective| Telephoto Lens'
Mild perspective effects to simulate a telephoto lens are applied to the model view in the Viewport.
'View| Display Options'
'View| Display Options| Points'
'View| Display Options| Points| Shape'
'View| Display Options| Points| Shape| Square'
Display points as squares in the Viewport.
'View| Display Options| Points| Shape| Diamond'
Display points as diamonds in the Viewport.
'View| Display Options| Points| Shape| Circle'
Display points as circles in the Viewport.
'View| Display Options| Points| Shape| Cross'
Display points as crosses in the Viewport.
'View| Display Options| Points| Size'
'View| Display Options| Points| Size| Small'
Set the point symbol size to small in the Viewport.
'View| Display Options| Points| Size| Medium'
Set the point symbol size to medium in the Viewport.
'View| Display Options| Points| Size| Large'
Set the point symbol size to large in the Viewport.
'View| Display Options| Surfaces'
'View| Display Options| Surfaces| Fill Surfaces'
Toggle the display style for filling surfaces.
'View| Display Options| Surfaces| Show Edges'
Toggle the display style for showing the edges of surfaces.
'View| Display Options| Surfaces| Show Normals'
Toggle the display style for showing the surface normals.
'View| Display Options| Surfaces| Normal Arrow Size'
'View| Display Options| Surfaces| Normal Arrow Size| Small'
Set the normal arrow symbol size to small in the Viewport.
'View| Display Options| Surfaces| Normal Arrow Size| Medium'
Set the normal arrow size to medium in the Viewport.
'View| Display Options| Surfaces| Normal Arrow Size| Large'
Set the normal arrow size to large in the Viewport.
'View| Display Options| Nodes'
'View| Display Options| Nodes| Shape'
'View| Display Options| Nodes| Shape| Square'
Display Nodes as squares in the Viewport.
'View| Display Options| Nodes| Shape| Diamond'
Display Nodes as diamonds in the Viewport.
'View| Display Options| Nodes| Shape| Circle'
Display Nodes as circles in the Viewport.
'View| Display Options| Nodes| Size'
'View| Display Options| Nodes| Size| Small'
Set the Node symbol size to small in the Viewport.
'View| Display Options| Nodes| Size| Medium'
Set the Node symbol size to medium in the Viewport.
'View| Display Options| Nodes| Size| Large'
Set the Node symbol size to large in the Viewport.

'View| Display Options| Elements'

'View| Display Options| Elements| Fill Elements'
Toggle the display style for filling Elements.
'View| Display Options| Elements| Show Internal Faces'
Toggle the display style for showing the internal faces of Elements. When off, this can speed the plotting of solid models as all faces marked as internal are skipped.
'View| Display Options| Elements| Show Edges'
Toggle the display style for showing the edges of Elements.
'View| Display Options| Elements| Show Normals'
Toggle the display style for showing the Element normals.
'View| Display Options| Elements| Normal Arrow Size'
'View| Display Options| Elements| Normal Arrow Size| Small'
Set the normal arrow symbol size to small in the Viewport.
'View| Display Options| Elements| Normal Arrow Size| Medium'
Set the normal arrow size to medium in the Viewport.
'View| Display Options| Elements| Normal Arrow Size| Large'
Set the normal arrow size to large in the Viewport.
'View| Display Options| Displacement Constraints'
'View| Display Options| Displacement Constraints| Size'
'View| Display Options| Displacement Constraints| Size| Small'
Set the Displacement Constraint symbol size to small in the Viewport.
'View| Display Options| Displacement Constraints| Size| Medium'
Set the Displacement Constraint symbol size to medium in the Viewport.
'View| Display Options| Displacement Constraints| Size| Large'
Set the Displacement Constraint symbol size to large in the Viewport.
'View| Display Options| Displacement Constraints| Highlight Non Zero Values'
Toggles whether non zero values are highlighted. This can be useful to visually
indicate which are not the most common zero values.
'View| Display Options| Pressures'
'View| Display Options| Pressures| Arrow Size'
'View| Display Options| Pressures| Arrow Size| Small'
Set the arrow symbol size to small in the Viewport.
'View| Display Options| Pressures| Normal Arrow Size| Medium'
Set the arrow symbol size to medium in the Viewport.
'View| Display Options| Pressures| Arrow Size| Large' Set the arrow symbol size to large in the Viewport.
'View| Display Options| Nodal Pressures'
'View| Display Options| Nodal Pressures| Arrow Size' 'View| Display Options| Nodal Pressures| Arrow Size| Small' Set the arrow symbol size to small in the Viewport.
'View| Display Options| Nodal Pressures| Normal Arrow Size| Medium' Set the arrow symbol size to medium in the Viewport.
'View| Display Options| Nodal Pressures| Arrow Size| Large' Set the arrow symbol size to large in the Viewport.
'View| Display Options| Forces'
'View| Display Options| Forces| Arrow Size'
'View| Display Options| Forces| Arrow Size| Small’ Set the arrow symbol size to small in the Viewport.
'View| Display Options| Forces| Normal Arrow Size| Medium' Set the arrow symbol size to medium in the Viewport.
'View| Display Options| Forces| Arrow Size| Large' Set the arrow symbol size to large in the Viewport.
'View| Colours'
'View| Colours| Points'
Open a dialogue box to specify the colours used for points.

Click on the coloured box to change the colour using the windows colour picker dialogue.

'View| Colours| Lines'

Open a dialogue box to specify the colours used for lines.

'View| Colours| Surfaces'

'View| Colours| Surfaces| Depth Shaded'
Set the colours of surfaces to be depth shaded.

'View| Colours| Surfaces| Infinite Light Shaded'

Set the colours of surfaces to be infinite light shaded.
'View| Colours| Surfaces| Colour by ID number'
Set the colours of surfaces to be coloured by ID number.
'View| Colours| Surfaces| Surface Colour'
Open a dialogue box to specify the colours used for surfaces.

'View| Colours| Surfaces| Selected Colour'

Open a dialogue box to specify the colours used for surfaces that are selected.

'View| Colours| Surfaces| Surface Normal Colour'
Open a dialogue box to specify the colours used for surface normal arrows.

'View| Colours| Nodes'

Open a dialogue box to specify the colours used for nodes.

'View| Colours| Elements'

'View| Colours| Elements| Depth Shaded'
Set the colours of Elements to be depth shaded.
'View| Colours| Elements| Infinite Light Shaded'
Set the colours of Elements to be infinite light shaded.

'View| Colours| Elements| Colour by ID number'

Set the colours of Elements to be coloured by ID number. The colours are intended to be tasteful rather than informative.

'View| Colours| Elements| Colour by Material'

Set the colours of Elements to be coloured by Material number. The Colour will be selected by taking the remainder of the material number when divided by 16, and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Colour by Property'
Set the colours of Elements to be coloured by Property number. The Colour will be selected by taking the remainder of the property number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Colour by Type'
Set the colours of Elements to be coloured by Type number. The Colour will be selected by taking the remainder of the type number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Colour by NSRL'
Set the colours of Elements to be coloured by NSRL number. The Colour will be selected by taking the remainder of the NSRL number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.

'View| Colours| Elements| Colour by NORDR'

Set the colours of Elements to be coloured by Node Order number. The Colour will be selected by taking the remainder of the Node Order number when divided by 16, and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Colour by Formulation'
Set the colours of Elements to be coloured by Formulation number. The Colour will be selected by taking the remainder of the formulation number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Colour by Face Number'
Set the colours of Elements to be coloured by Face number. The Colour for each face will be selected by taking the remainder of the face number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.

'View| Colours| Elements| Colour by Layer'

Set the colours of Elements to be coloured by Layer number. The Colour will be selected by taking the remainder of the layer number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.

'View| Colours| Elements| Show Material X Direction'

Set the display type to show the Material X direction for shell elements and face 1 of solid elements only. This option is particularly useful for composite elements or elements with orthotropic materials, as the element face is shaded with the direction of the material X direction. In addition, the shading is coloured dependant on the direction displayed on the screen to further indicate the direction. The colours are as follows:-

Blue	0°	to	90°
Green	91°	to	180°
Purple	181°	to	269°
Red	270°	to	359°

When viewing the element, 0° is horizontal to the right, with positive angle anti clockwise. The resolution of the X direction angle is 14°, so the angle shown must be taken as a guide rather than as an exact orientation.

The picture below is an example of a model with poor material X direction definitions. Due to the multitude of different directions, an isotropic material has to be used otherwise the

'View| Colours| Elements| Colour by Group'

Set the colours of Elements to be coloured by Group number. The Colour will be selected by taking the remainder of the group number when divided by 16 , and looking up the colour from the 16 specified in 'View| Colours| Colour List'.
'View| Colours| Elements| Element Colour'
Open a dialogue box to specify the colours used for Elements.
'View| Colours| Elements| Selected Colour'
Open a dialogue box to specify the colours used for Elements that are selected.
'View| Colours| Elements| Element Normal Colour'
Open a dialogue box to specify the colours used for Element normal arrows.
'View| Colours| Rigid Links'
Open a dialogue box to specify the colours used for Rigid Links.
'View| Colours| Displacement Constraints'
Open a dialogue box to specify the colours used for Displacement Constraints.

'View| Colours| Pressures'

Open a dialogue box to specify the colours used for Pressures.

'View| Colours| Nodal Pressures'

Open a dialogue box to specify the colours used for Nodal Pressures.
'View| Colours| Forces'
Open a dialogue box to specify the colours used for Forces.
'View| Colours| Image Border'
Open a colour picker dialogue box to specify the colour used for the border around the image. Make it the same as the image background to make it disappear.

'View| Colours| Image Background'
Open a dialogue box to specify the colour used for the image background.
'View| Colours| Bounding Box'
Open a dialogue box to specify the colour used for the bounding box that appears when plotting takes more than 0.1s.
'View| Colours| Entity Snap'
Open a dialogue box to specify the colours used for the snap marker when snapping to an entity.
'View| Colours| Colour List'
Open a dialogue box to specify the 16 colours used for various identification requirements.

Click on a colour to change it with a colour picker dialogue box.

'View| Labels'

'View| Labels| All'
Open a dialogue box to specify whether the various labels are toggled on or off.

The label is on when the checkbox is ticked.

'View| Labels| Points'

Toggle the display of labels for Points.

'View| Labels| Lines'

Toggle the display of labels for Lines.

'View| Labels| Surfaces'

Toggle the display of labels for Surfaces.

'View| Labels| Nodes'

Toggle the display of labels for Nodes.

'View| Labels| Elements’

Toggle the display of labels for Elements.
'View| Labels| Rigid Links'
Toggle the display of labels for Rigid Links.
'View| Labels| Font'
Specify the font used for the labels using a font picker dialogue box.

'View| Light Source'

'View| Light Source| Top Left'
When shading the model simulate the infinite light source as coming from the top left of the view.
'View| Light Source| Top Centre'
When shading the model simulate the infinite light source as coming from the top centre of the view.

'View| Light Source| Top Right'

When shading the model simulate the infinite light source as coming from the top right of the view.
'View| Light Source| Centre Left'
When shading the model simulate the infinite light source as coming from the centre left of the view.
'View| Light Source| Centre'
When shading the model simulate the infinite light source as coming from the centre of the view.

'View| Light Source| Centre Right'

When shading the model simulate the infinite light source as coming from the centre right of the view.

'View| Light Source| Bottom Left'

When shading the model simulate the infinite light source as coming from the bottom left of the view.

'View| Light Source| Bottom Centre'

When shading the model simulate the infinite light source as coming from the bottom centre of the view.

'View| Light Source| Bottom Right'

When shading the model simulate the infinite light source as coming from the bottom right of the view.

'View| Layers'

'View| Layers | Layer Controls'
Opens a dialogue box to control, add, delete, select layers. The dialogue box is as below:-

Double click the layer name to make it the current layer, right click to rename the layer.

'View| Layers | Set Current'

Opens a dialogue box to set the current layer that new entities are added to.

'View| Layers | Plot by Layer Name'
Opens a dialogue box to plot layers by their name.

[r Plot Layer			$\square \square$	
Layer Number	Layer Name			^
0	Layer 0			
1	Skinhip			
2	SkinTorso			v
OK		Plot	Help	

'View| Layers | Erase by Layer Name'

Opens a dialogue box to erase layers by their name.

'View| Layers | Select by Layer Name'
Opens a dialogue box to select layers by their name.

©r Select Layer
Layer Number Layer Name Layer 0 0 SkinHip SkinTorso Select 1 2 OK

'View| Layers | Deselect by Layer Name'
Opens a dialogue box to deselect layers by their name.

'View| Layers | Add to Current Layer'

Adds the currently selected entities to the current layer. All visible entity types except Boundary conditions (Displacement Constraints, Pressures, Nodal Pressures and Forces) can be added to layers.

'View| Groups'

'View| Groups | Group Controls'
Opens a dialogue box to control, add, delete, select Groups. The dialogue box is as below:-

- Group Controls					\square
Current Group = Group 0					
Group Number					ヘ
0	Group 0				
1	hip				
2	abdomen				
3	chest				
4	neck $\underline{\text { v }}$				
OK	Add	Deselect	Select	Help	

Double click the Group name to make it the current Group, right click to rename the Group.

'View| Groups | Set Current'

Opens a dialogue box to set the current Group that new entities are added to.

'View| Groups | Plot by Group Name'
Opens a dialogue box to plot Groups by their name.

'View| Groups | Erase by Group Name'
Opens a dialogue box to erase Groups by their name.

'View| Groups | Select by Group Name'
Opens a dialogue box to select Groups by their name.

'View| Groups | Deselect by Group Name'
Opens a dialogue box to deselect Groups by their name.

'View| Groups | Add to Current Group'

Adds the currently selected elements to the current Group.

'View| Status'

Opens a dialogue window to dynamically inspect information about the model.

[r Model Status				- \square	
Item	Total	Min No.	Max No.	$\stackrel{\text { ה }}{ }$	
Model Size					
\times	1279	59750.8	61029.8		
Y	1046	-1071.4	-25.4		
Z	2402.4	-75.6	2326.8	v	
OK	Cancel			Help	

The dialogue data may be copied to the clipboard by right clicking over the data grid and selecting pop-up menu option 'Copy to Clipboard'. The data is Tab separated on the clipboard.

3.2.4 Selection Menu

The following menu commands may be found in the selection menu.

'Selection| All

Select all Points, Lines, Surfaces, Solids, Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures and Forces.

'Selection| All Geometry'

Select all Points, Lines, Surfaces and Solids.

'Selection| All FE Model'

Select all Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures and Forces.

'Selection| All Boundary Conditions

'Selection| All Boundary Conditions| All'
Select all Displacement Constraints, Pressures, Nodal Pressures and Forces.

'Selection| All Boundary Conditions| Range by Case Number'

Select all Displacement Constraints, Pressures, Nodal Pressures and Forces in a range of load cases. Typed input of the range is necessary in the command line.

'Selection| None'

Deselect all Points, Lines, Surfaces, Solids, Nodes, Elements, Rigid Links, Displacement Constraints, Pressures, Nodal Pressures and Forces.

'Selection| Points'

'Selection| Points| All'

Select all Points.
'Selection| Points| None'
Deselect all Points.
'Selection| Points| Range'
Select a range of points. Typed input of the range is necessary in the command line.

'Selection| Points| Invert Selection'

Invert the selection of points. All points that are initially invisible are made visible as they are selected.

'Selection| Points| Selected Lines'

Select points by association with selected lines.
'Selection| Points| Selected Surfaces'
Select points by association with selected surfaces.
'Selection| Points| Selected Solids'
Select points by association with selected solids.

'Selection| Lines'

'Selection| Lines| All'
Select all Lines.
'Selection| Lines| None’
Deselect all Lines.

'Selection| Lines| Range'

Select a range of Lines. Typed input of the range is necessary in the command line.

'Selection| Lines| Invert Selection'

Invert the selection of Lines. All Lines that are initially invisible are made visible as they are selected.

'Selection| Lines| Selected Points'

Select Lines by association with selected points.
'Selection| Lines| Selected Surfaces'
Select Lines by association with selected surfaces.
'Selection| Lines| Selected Solids'
Select Lines by association with selected solids.

'Selection| Surfaces'

'Selection| Surfaces| All'
Select all Surfaces.
'Selection| Surfaces| None'
Deselect all Surfaces.

'Selection| Surfaces| Range'

Select a range of Surfaces. Typed input of the range is necessary in the command Surface.

'Selection| Surfaces| Invert Selection'

Invert the selection of Surfaces. All Surfaces that are initially invisible are made visible as they are selected.

'Selection| Surfaces| Selected Points'

Select Surfaces by association with selected points.
'Selection| Surfaces| Selected Lines'
Select Surfaces by association with selected lines.
'Selection| Surfaces| Selected Solids'
Select Surfaces by association with selected solids.

'Selection| Nodes'

'Selection| Nodes| All'

Select all Nodes.
'Selection| Nodes| None'
Deselect all Nodes.

'Selection| Nodes| Range'

Select a range of Nodes. Typed input of the range is necessary in the command line.

'Selection| Nodes| Invert Selection'

Invert the selection of Nodes. All Nodes that are initially invisible are made visible as they are selected.

'Selection| Nodes| Selected Elements'

Select Nodes by association with selected Elements.
'Selection| Nodes| Selected Rigid Links'
Select Nodes by association with selected Rigid Links.

'Selection| Nodes| Selected Displacements'

Select Nodes by association with selected Displacement Constraints.

'Selection| Nodes| Selected Pressures'

Select Nodes by association with selected Pressures.

'Selection| Nodes| Selected Nodal Pressures'

Select Nodes by association with selected Nodal Pressures.

'Selection| Nodes| Selected Forces'

Select Nodes by association with selected Forces.

'Selection| Elements'

'Selection| Elements| All'
Select all Elements.

'Selection| Elements| None’

Deselect all Elements.

'Selection| Elements| Range'

Select a range of Elements. Typed input of the range is necessary in the command line.

'Selection| Elements| Invert Selection’

Invert the selection of Elements. All Elements that are initially invisible are made visible as they are selected.

'Selection| Elements| by Material'

Select Elements dependant on a range of material numbers. Selection of the element material range is necessary, from a list of options. This is carried out in a dialogue window as below:-

Select Element Material

Available Materials

Selected Materials

'Selection| Elements| by Property'

Select Elements dependant on a range of property numbers. Selection of the element property range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'Selection | Elements| by Element Type'

Select Elements with element type number in range. Selection of the element type range is necessary, from a list of options. This is carried out in a dialogue window as below:-
Select Element Type

Available Element Types
(001) 20 Plane Stress Element (002) 2D Plane Stress Element (003) Axisymmetric Solid Element (004) 3D Thick Solid Element (005) 3D Thick Shell Element (007) 3D Laminated Solid (009) 3D Hybrid Solid (010) 3D Membrane (011) 3D Tapered Beam (012) 3D Beam Element (013) 2D Beam Element (014) 3D Spar Element (015) 2D Spar (017) 3D Translational Spring (018) 2D Translational Spring (020) 3D General Shell (021) 3D Torsional Spring (022) 2D Torsional Spring 102512 D Mass

Selected Element Types

The element type number is from the list below:-
$\begin{array}{cl}\text { Type } & \text { Description } \\ 1 & \text { 2D Plane Stress Element }\end{array}$

2	2D Plane Stress Element
3	Axisymmetric Solid Element
4	3D Thick Solid Element
5	3D Thick Shell Element
7	3D Laminated Solid
9	3D Hybrid Solid
10	3D Membrane
11	3D Tapered Beam
12	3D Beam Element
13	2D Beam Element
14	3D Spar Element
15	2D Spar
17	3D Translational Spring
18	2D Translational Spring
20	3D General Shell
21	3D Torsional Spring
22	2D Torsional Spring
25	2D Mass
26	3D Mass
27	2D General Mass
28	3D General Mass
29	2D Mass and Inertia
30	3D Mass and Inertia
32	3D Laminated Composite
33	3D Laminated Sandwich (Honeycomb)
34	Axisymmetric Solid with Non-Axisymmetric Loading
36	Axisymmetric shell
37	Axisymmetric shell with Non-Axisymmetric Loading
38	3D General Spring
39	3D General Beam
40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction
50	3D Gap/Friction
104	3D Solid for Heat Transfer
105	3D Thick Shell for Heat Transfer
112	3D Bar for Heat Transfer
120	3D Thin Shell for Heat Transfer
149	3D Convection Link for Heat Transfer
150	3D Radiation Link for Heat Transfer

'Selection| Elements| by NSRL'

Select Elements with NSRL number in range. The NSRL of the elements to be erased is selected from a list of Serial Numbers generated for the current model. The selection list may be similar to the list below:-

‘Selection| Elements| by NORDR'

Select Elements with Node Order number in range. Selection of the Node Order is from a list as below:-

The Node Order is the node order of the element, and is defined as below:-
Node Order Description
$1 \quad$ For all point or line elements
$1 \quad$ For all 2 noded axisymmetric shell elements
1 For all 4 noded shell elements/ 4 noded axisymmetric solid elements
1 or 12 For all 8 noded solid elements
2 For all 3 noded axisymmetric elements
2 For all 8 noded shell elements
2 For all 20 noded brick elements
10 For 3 Noded triangular shell elements
106 noded prism shaped brick elements
116 Noded triangular shell elements
$11 \quad 15$ noded prism brick elements
204 noded triangular pyramid solid elements
$21 \quad 10$ noded triangular pyramid solid elements
305 noded rectangular pyramid elements
$31 \quad 13$ noded rectangular pyramid elements
'Selection| Elements| by Formulation'
Select Elements with formulation number in range. Selection of the formulation range is necessary from a selection list, as below:-

Select Element Formulation

Available Formulations
(D) Undefined
(1) Linear
(2) Parabolic
(3) Cubic
(4) Mixed

OK
K

Formulation is as below:-
Formulation Description
1 Linear
2 Parabolic
3 Cubic
4 Mixed

'Selection| Elements| Selected Nodes'

Select Elements by association with selected Nodes.

'Selection| Elements| Selected Rigid Links'

Select Elements by association with selected Rigid Links.
'Selection| Elements| Select by Group Name'
Opens a dialogue window to choose the element group name to select.

'Selection| Elements| Deselect by Group Name'

Opens a dialogue window to choose the element group name to deselect.

'Selection| Rigid Links'

'Selection| Rigid Links| All'
Select all Rigid Links.

'Selection| Rigid Links| None'

Deselect all Rigid Links.

'Selection| Rigid Links| Range'

Select a range of Rigid Links. Typed input of the range is necessary in the command line.

'Selection| Rigid Links| Invert Selection'

Invert the selection of Rigid Links. All Rigid Links that are initially invisible are made visible as they are selected.

'Selection| Rigid Links| Selected Nodes'

Select Rigid Links by association with selected Nodes.

'Selection| Rigid Links| Selected Elements'

Select Rigid Links by association with selected Elements.

'Selection| Displacement Constraints'

'Selection| Displacement Constraints| All'
Select all Displacement Constraints.
'Selection| Displacement Constraints| None'
Deselect all Displacement Constraints.
'Selection| Displacement Constraints| Invert Selection'
Invert the selection of Displacement Constraints. All Displacement Constraints that are initially invisible are made visible as they are selected.
'Selection| Displacement Constraints| by Load Case'
Select all displacement constraints within a range of Load Cases. Typed input of the range is necessary in the command line.
'Selection| Displacement Constraints| by Node Number'
Select all displacement constraints within a range of Node Numbers. Typed input of the range is necessary in the command line.
'Selection| Displacement Constraints| Selected Nodes'
Select all displacement constraints that are visible associated with the selected nodes.
'Selection| Displacement Constraints| Selected Elements'
Select all displacement constraints that are visible associated with the selected elements.

'Selection| Pressures'

'Selection| Pressures| All'

Select all Pressures.
'Selection| Pressures| None'
Deselect all Pressures.
'Selection| Pressures| Invert Selection'
Invert the selection of Pressures. All Pressures that are initially invisible are made visible as they are selected.

'Selection| Pressures| Range by Element Association'

Select all Pressures associated with selected elements.

'Selection| Pressures| Range by Face Association'

Select Pressures on a face associated with selected elements. Typed input of the face number is necessary in the command line.
For shell elements the face numbers are:-
1 Bottom Face
2 Top Face
For solid elements the face numbers are 1 to 4,5 or 6 depending on the element type.

'Selection| Pressures| by Load Case'

Select all Pressures within a range of Load Cases. Typed input of the range is necessary in the command line.

'Selection| Pressures| Selected Nodes'

Select all Pressures that are visible associated with the selected nodes.

'Selection| Pressures| Selected Elements'

Select all Pressures that are visible associated with the selected elements.

'Selection| Pressures| Zero Value'

Select all Pressures that have a pressure of zero.

'Selection| Nodal Pressures'

'Selection| Nodal Pressures| All'
Select all Nodal Pressures.

'Selection| Nodal Pressures| None'

Deselect all Nodal Pressures.

'Selection| Nodal Pressures| Invert Selection'

Invert the selection of Nodal Pressures. All Nodal Pressures that are initially invisible are made visible as they are selected.

'Selection| Nodal Pressures| by Load Case’

Select all Nodal Pressures within a range of Load Cases. Typed input of the range is necessary in the command line.

'Selection| Nodal Pressures| by Node Number'

Select all Nodal Pressures within a range of Node Numbers. Typed input of the range is necessary in the command line.
'Selection| Nodal Pressures| Selected Nodes'
Select all Nodal Pressures that are visible associated with the selected nodes.

'Selection| Nodal Pressures| Selected Elements'

Select all Nodal Pressures that are visible associated with the selected elements.

'Selection| Nodal Pressures| Zero Value'

Select all Nodal Pressures that have a load of zero.

'Selection| Forces'

'Selection| Forces| All'
Select all Forces.

'Selection| Forces| None’

Deselect all Forces.
'Selection| Forces| Invert Selection'
Invert the selection of Forces. All Forces that are initially invisible are made visible as they are selected.
'Selection| Forces| by Load Case'
Select all Forces within a range of Load Cases. Typed input of the range is necessary in the command line.
'Selection| Forces| by Node Number'
Select all Forces within a range of Node Numbers. Typed input of the range is necessary in the command line.

'Selection| Forces| Selected Nodes'

Select all Forces that are visible associated with the selected nodes.

'Selection| Forces| Selected Elements'

Select all Forces that are visible associated with the selected elements.

'Selection| Forces| Zero Value'

Select all Forces that have a load of zero.

'Selection| Layers'

'Selection| Layers| Select by Name'
Opens a dialogue window to choose the layer name to select.

'Selection| Layers| Deselect by Name'

Opens a dialogue window to choose the layer name to deselect.

'Selection| Deselect After Operation'

Specifies whether entities are to be automatically deselected after an operation occurs.
For example:-
If elements are selected and copied when 'Deselect After Operation' is checked, the original elements will be deselected once they are copied. However, if 'Deselect After Operation' is not checked, the original elements remain selected, and can be copied again.

3.2.5 Geometry Menu

The following menu commands may be found in the geometry menu.

'Geometry| Points'

'Geometry| Points| Copy'

Open a dialogue box to enter the data necessary to copy the currently selected points. Points may be translated, rotated, mirrored or scaled. The dialogue box is shown below:-
Translating:-

The 'Pick Points' button may be pressed to select a 'Copy From' Point and a 'Copy To’ point. This will then be used as the base displacement per copy.

Rotating:-

To specify an axis other than the normal axes, press the 'Pick Axis' button. It will then be possible to specify two points to describe the actual axis of rotation using the right hand rule.

Mirroring:-

To select a non-standard mirror plane press the 'Pick Plane’ button and interactively select 3 points to define the mirror plane.

Scaling:-

The scale may be different in each axis to distort the copies. Note that when scaling the distance between the selected point and the base point is scaled by the axis scale factor. Consequently points at the base point will appear not to be copied.

'Geometry| Points| Move'

Open the same dialogue box as shown in 'Geometry| Points| Copy' to enter the data necessary to move the currently selected points. Points may be translated, rotated, mirrored or scaled. No copies are made.

‘Geometry| Points| Add'

'Geometry| Points| Add| Pick Points'

Starts the interactive point creation routine. Points may be added at any cursor snap location or their $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ co-ordinates may be entered in the command line.

'Geometry| Points| Add| Enter Co-ordinates'

Opens a dialogue box to enter the point number and location, as below:-

'Geometry| Points| Add| Selected Nodes'

Adds a point at the same location as every selected node.

'Geometry| Points| Delete'

'Geometry| Points| Delete| All'
Delete all points.
'Geometry| Points| Delete| Selected'
Delete all selected points.
'Geometry| Points| Delete| Inactive'
Delete all points that are not referenced by other entities.
'Geometry| Points| Select'
'Geometry| Points| Select| All'
Select all points.
'Geometry| Points| Select| None'
Deselect all points.

'Geometry| Points| Select| Range'

Select a range of points. Typed input of the range is necessary in the command line.

'Geometry| Points| Select| Invert Selection'

Invert the selection of points. All points that are initially invisible are made visible as they are selected.

'Geometry| Points| Select| Selected Lines'

Select points by association with selected lines.

'Geometry| Points| Select| Selected Surfaces'

Select points by association with selected surfaces.

'Geometry| Points| Select| Selected Solids'

Select points by association with selected solids.

'Geometry| Points| Inspect'

Open a dialogue window to inspect, alter locations or add points, as below:-

'Geometry| Points| Eliminate Duplicates'

Checks the range of currently selected points and eliminates any duplicated points. All references to points within lines are updated too.

'Geometry| Points| Find'

Find a range of points. Typed input of the range is necessary in the command line. The points will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

Geometry| Lines'

'Geometry| Lines| Copy'

Open a dialogue box to enter the data necessary to copy the currently selected lines. Lines may be translated, rotated, mirrored or scaled. The dialogue box is the same as used for points. All points necessary for the new lines are created automatically.

'Geometry| Lines| Modify'

'Geometry| Lines| Modify| Move'

Open the same dialogue box as shown in 'Geometry| Points| Copy' to enter the data necessary to move the currently selected lines. Lines may be translated, rotated, mirrored or scaled. No copies are made.

'Geometry| Lines| Modify| Break'

Prepares to break the selected lines. Type in the number of segments to break each selected line by in the command line. The selected lines will then be hidden and deselected as each is replaced by the required number of line segments.

'Geometry| Lines| Add'

Starts the interactive line creation routine. Lines may be started or finished at any cursor snap location or their $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ co-ordinates may be entered in the command line.

'Geometry| Lines| Delete'

'Geometry| Lines| Delete| All'
Delete all Lines.

'Geometry| Lines| Delete| Selected'

Delete all selected Lines.

'Geometry| Lines| Delete| Inactive'

Delete all Lines that are not referenced by other entities.
'Geometry| Lines| Select'
'Geometry| Lines| Select| All'
Select all Lines.
'Geometry| Lines| Select| None’
Deselect all Lines.

'Geometry| Lines| Select| Range'

Select a range of Lines. Typed input of the range is necessary in the command line.

'Geometry| Lines| Select| Invert Selection'

Invert the selection of Lines. All Lines that are initially invisible are made visible as they are selected.
'Geometry| Lines| Select| Selected Points'
Select Lines by association with selected points.
'Geometry| Lines| Select| Selected Surfaces'
Select Lines by association with selected surfaces.
'Geometry| Lines| Select| Selected Solids'
Select Lines by association with selected solids.

‘Geometry| Lines| Inspect'

Starts the interactive inspection routine. Using this the line middles may be snapped to and the line information will be displayed in the 'Progress Information' box.

‘Geometry| Lines| Eliminate Duplicates'

Checks the range of currently selected lines and eliminates any duplicated lines. All references to lines within surfaces are updated too.

'Geometry| Lines| Find'

Find a range of lines. Typed input of the range is necessary in the command line. The lines will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

'Geometry| Surfaces'

'Geometry| Surfaces| Copy'

Open a dialogue box to enter the data necessary to copy the currently selected Surfaces. Surfaces may be translated, rotated, mirrored or scaled. The dialogue box is the same as used for points. All points and lines necessary for the new Surfaces are created automatically.

'Geometry| Surfaces| Move'

Open the same dialogue box as shown in 'Geometry| Points| Copy' to enter the data necessary to move the currently selected Surfaces. Surfaces may be translated, rotated, mirrored or scaled. No copies are made.

'Geometry| Surfaces| Add'

'Geometry| Surfaces| Add| 2 Lines'

Starts the interactive Surface creation routine. Surfaces are created by snapping to the midpoints of 2 lines.

'Geometry| Surfaces| Delete'

'Geometry| Surfaces| Delete| All'

Delete all Surfaces.
'Geometry| Surfaces| Delete| Selected'
Delete all selected Surfaces.
'Geometry| Surfaces| Delete| Inactive'
Delete all Surfaces that are not referenced by other entities.

'Geometry| Surfaces| Select'

'Geometry| Surfaces| Select| All'
Select all Surfaces.

'Geometry| Surfaces| Select| None'

Deselect all Surfaces.

'Geometry| Surfaces| Select| Range'

Select a range of Surfaces. Typed input of the range is necessary in the command Surface.
‘Geometry| Surfaces| Select| Invert Selection' Invert the selection of Surfaces. All Surfaces that are initially invisible are made visible as they are selected.
'Geometry| Surfaces| Select| Selected Points'
Select Surfaces by association with selected points.
'Geometry| Surfaces| Select| Selected Lines'
Select Surfaces by association with selected lines.
'Geometry| Surfaces| Select| Selected Solids'
Select Surfaces by association with selected solids.

'Geometry| Surfaces| Inspect'

Starts the interactive inspection routine. Using this the Surface centroids may be snapped to and the Surface information will be displayed in the 'Progress Information' box.

'Geometry| Surfaces| Reverse Normal'

Reverses the normals of the selected surfaces.

'Geometry| Surfaces| Find'

Find a range of surfaces. Typed input of the range is necessary in the command line. The surfaces will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

'Geometry| Mesh'

'Geometry| Mesh| Points'
'Geometry| Mesh| Points| All'
Mesh all points with point elements according to the current 'Point Element Mesh Settings'.

'Geometry| Mesh| Points| Selected'

Mesh selected points with point elements according to the current 'Point Element Mesh Settings'.
'Geometry| Mesh| Points| Pick Points'
Start interactive point meshing routine. Points selected on screen are meshed with point elements according to the current 'Point Element Mesh Settings'.

'Geometry| Mesh| Points| Mesh Settings'

Open a window to specify the current 'Point Element Mesh Settings'. The window is as below:-

‘Geometry| Mesh| Lines’

'Geometry| Mesh| Lines| All'

Mesh all Lines with Line elements according to the current 'Line Element Mesh Settings'.

'Geometry| Mesh| Lines| Selected'

Mesh selected Lines with Line elements according to the current 'Line Element Mesh Settings'.

'Geometry| Mesh| Lines| Pick Lines'

Start interactive Line meshing routine. Lines selected on screen are meshed with Line elements according to the current 'Line Element Mesh Settings'. It is possible to change the numbers of elements meshed along the line by the Command Line while the 'Mesh Lines' function is operative. This is achieved by typing ' $n=[$ number]'. To change the material, type ' $m=$ [material number]', or property, ' $p=[$ property number]'.

'Geometry| Mesh| Lines| Mesh Settings'

Open a window to specify the current 'Line Element Mesh Settings'. The window is as below:-

'Geometry| Mesh| Surfaces'

'Geometry| Mesh| Surfaces| All'

Mesh all Surfaces with Surface elements according to the current 'Surface Element Mesh Settings'. Where possible the surfaces are meshed as the more accurate rectangular elements. Where the surface tapers to a corner, triangular elements are put into the corner.

'Geometry| Mesh| Surfaces| Selected'

Mesh selected Surfaces with Surface elements according to the current 'Surface Element Mesh Settings'.

'Geometry| Mesh| Surfaces| Pick Surfaces'

Start interactive Surface meshing routine. Surfaces selected on screen are meshed with Surface elements according to the current 'Surface Element Mesh Settings'.
It is possible to change the numbers of elements meshed in the U and V directions by the Command Line while the 'Mesh Surfaces' function is operative. This is achieved by typing ' $u=$ [number]' or ' $v=[$ number]' as appropriate. To change the material, type ' $m=[m a t e r i a l$ number]', or property, ' $\mathrm{p}=[$ property number]'.
'Geometry| Mesh| Surfaces| Mesh Settings'
Open a window to specify the current 'Surface Element Mesh Settings'. The window is as below:-

'Geometry| Mesh| Surfaces| Pick Specified Edges'
Mesh Surfaces to generate numbers of elements along each edge complying with the current 'Specified Edge Settings'. When the surface is triangular, the number specified for the elements on edge 4 is ignored.
'Geometry| Mesh| Surfaces| Specified Edge Settings'
Open a window to specify the current 'Specified Edge Settings'. The window is as below:-

'Geometry| Mesh| Set Current Layer'

Opens a dialogue box to set the layer the new elements will be added to. The dialogue box is as below:-

'Geometry| Mesh| Set Current Group'

Opens a dialogue box to set the group the new elements will be added to. The dialogue box is as below:-

3.2.6 FE Model Menu

The following menu commands may be found in the FE Model menu.

'FE Model| Executive Commands'

Controls the analysis destination program and the analysis. The executive data tells the FE package what to expect and what data to operate on during the analysis. It also tells the Chestnut Pens Modelling Studio what to allow the user to specify by being aware of what the destination FE package is. This saves the user time;
For example: there is no point in specifying laminate definition for a MYSTRAN model, as MYSTRAN cannot analyse laminate elements.

Both NISA and MYSTRAN have different capabilities, so as the target analysis program is chosen, the options alter.

The options available for NISA are shown below:-

Analysis Type

The analysis type (at the time of writing this command reference) must be 'Static Analysis'. If you choose the Eigen analysis tag, the Eigen Analysis type must be specified and the mass formulation model. The default mass formulation model is the more accurate but more processor intensive 'Consistent' model. The alternative is the 'lumped' model which discretises the element mass at its centroid.

Echo Geometry in the output file

Echoing the geometry in the output file gives a post-processing package enough information to rebuild the model without needing to open the original model file.

Auto-constrain spurious rotation

With shell elements it's possible to have spurious rotations of the elements about their normal's. To prevent this check 'Auto-constrain Spurious Rotation'.

Blank Common

For a NISA analysis the size of the Blank Common scratch area needs to be defined. This must be at least $7 x$ the number of nodes - but experience shows that this is a minimum figure that sometimes isn't enough. When the NISA file is exported (using 'File| Export') the minimum value of Blank Common is calculated and rounded up to the next highest 50,000 . The number that is exported is the higher of the figure entered here and the figure calculated.

Compute Geometric Properties

This specifies whether NISA computes and prints the mass and mass moment of inertia of the model used.

Execution Type

This specifies whether the analysis module checks, executes or checks and executes the NISA file.

Number of Highest Stresses to Sort

NISA can print a number of sorted stresses. If this is zero, no stresses are sorted.

Save Geometry/ Output Binary Files

If binary files are used to save the model data for easy access by EMRC's DISPLAY III or DISPLAY IV post processing modules. The geometry binary file saved is the 26 . dat file, while the output binary file is the 27.dat file. If the user wants other binary files, then the NISA file needs to be edited in a text editor.

File root for saved files

If the binary files are saved, and the file root is 'File', then the binary geometry file saved by NISA will be 'File26.dat'.

Element Resequencing Option

Select the option to specify how resequencing is conducted. The default is 'On (Use Topology)', and there is rarely any need to alter this. See the NISA user's manual for further details on resequencing options.

Warnings

Determines whether warnings permit the analysis to continue.

The options for MYSTRAN are as below:-

Analysis Type
The analysis type (at the time of writing this command reference) must be 'Static Analysis'.

Echo Geometry in the output file
Echoing the geometry in the output file gives a post-processing package enough information to rebuild the model without needing to open the original model file.

'FE Model| Nodes'

'FE Model| Nodes| Copy'

Open a dialogue box to enter the data necessary to copy the currently selected nodes. Nodes may be translated, rotated, mirrored or scaled. The dialogue box is the same as used for points.

'FE Model| Nodes| Move'

'FE Model| Nodes| Move| Move'

Open the same dialogue box as shown in 'Geometry| Points| Copy' to enter the data necessary to move the currently selected nodes. Nodes may be translated, rotated, mirrored or scaled. No copies are made.

'FE Model| Nodes| Move| Align X'

Type in the new X value for the selected nodes and press 'Enter'.

'FE Model| Nodes| Move| Align Y'

Type in the new Y value for the selected nodes and press 'Enter'.

'FE Model| Nodes| Move| Align Z'

Type in the new Z value for the selected nodes and press 'Enter'.

'FE Model| Nodes| Add'

'FE Model| Nodes| Add| Pick Points'
Starts the interactive node creation routine. Nodes may be added at any cursor snap location or their X, Y, Z co-ordinates may be entered in the command line.
'FE Model| Nodes| Add| Enter Co-ordinates'
Opens a dialogue box to enter the node number and location, as below:-

'FE Model| Nodes| Add| Selected Points'

Adds a node at the same location as every selected point.
'FE Model| Nodes| Delete'
'FE Model| Nodes| Delete| All'
Delete all nodes not referenced by elements, rigid links, displacement constraints, nodal pressures or forces.
'FE Model| Nodes| Delete| Selected'
Delete all selected nodes not referenced by elements, rigid links, displacement constraints, nodal pressures or forces.
'FE Model | Nodes| Select'
'FE Model | Nodes| Select| All'
Select all Nodes.
'FE Model | Nodes| Select| None'
Deselect all Nodes.
'FE Model | Nodes| Select| Range'
Select a range of Nodes. Typed input of the range is necessary in the command line.
'FE Model| Nodes| Select| Invert Selection'
Invert the selection of Nodes. All Nodes that are initially invisible are made visible as they are selected.
'FE Model| Nodes| Select| Selected Elements'
Select Nodes by association with selected Elements.

'FE Model| Nodes| Select| Selected Rigid Links'

Select Nodes by association with selected Rigid Links.

'FE Model| Nodes| Selected Displacements'

Select Nodes by association with selected Displacement Constraints.

'FE Model| Nodes| Selected Pressures'

Select Nodes by association with selected Pressures.
'FE Model| Nodes| Selected Nodal Pressures'
Select Nodes by association with selected Nodal Pressures.

'FE Model| Nodes| Selected Forces'

Select Nodes by association with selected Forces.
'FE Model| Nodes| Inspect'
Opens a dialogue window to inspect, edit or add nodes. The window is as below:-

[r Inspecting Nodes				$\square \square$	
Node Number	X	Y	Z		
1	60629.8	-1041.4	-50.2		
2	60629.8	-50.8	-50.2		
3	59842.4	-1041.4	-50.2		
4	59842.4	-50.8	-50.2		
5	60502.8	-711.2	-50.2		
OK	Cancel	Add No		Help	

'FE Model| Nodes| Merge'

Merge the selected nodes. A dialogue window opens requesting the current merge tolerance for the nodes. This is the maximum distance at which nodes will be considered to be representing the same geometric point. The dialogue window is as below:-

'FE Model| Nodes| Delete Inactive'

Deletes nodes not referenced by elements, rigid links, displacement constraints, nodal pressures or forces. If any nodes are selected at the point of selecting the command, the deletion is restricted to the selected nodes. Otherwise all nodes are checked.

'FE Model | Nodes| Compact ID's'

Opens a dialogue box requesting the starting number and increment for the node number compaction of the selected nodes. The dialogue box is as below:-

'FE Model | Nodes| Set Merge Tolerance'

Sets the Node Merge Tolerance. This merge tolerance may need to be set prior to importing STL files when Nodes are automatically merged.

'FE Model | Nodes | Find'

Find a range of nodes. Typed input of the range is necessary in the command line. The nodes will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

'FE Model| Elements'

'FE Model| Elements| Copy'
'FE Model| Elements| Copy| Copy'
Open a dialogue box to enter the data necessary to copy the currently selected Elements. Elements may be translated, rotated, mirrored or scaled. The dialogue box is the same as used for points.

'FE Model| Elements| Copy| Offset Selected Elements'

The selected first order shell elements (NORDR 1 or 10 only) are copied and offset in the direction of the element normal. The user is required to type in the offset.

'FE Model| Elements| Move'

Open the same dialogue box as shown in 'Geometry| Points| Copy' to enter the data necessary to move the currently selected Elements. Elements may be translated, rotated, mirrored or scaled. No copies are made.

'FE Model| Elements| Add' 'FE Model| Elements| Add| Pick Nodes'

Create Elements by picking the nodes that define the elements, element by element. The element type that is created is defined by the data entered using menu option 'FE Model|
Elements| Add| Settings'. The default settings are 'General Shell, Type 20, Linear Formulation, Material 1, Property 1. The node pick order is specified in the 'Element Library' section of the 'User Guide'. A simplified pick order guide is given below:-

1) Point Elements. Pick one Node.
2) Line Elements. Pick two Nodes.
3) Shell Elements. Pick Nodes sequentially around the perimeter going anticlockwise about the intended shell normal. If midside nodes are required, pick them in the same sequence.
4) Solid Elements. Operation 1: Pick Nodes sequentially around the perimeter of the bottom face, going anticlockwise around the element centroid. If midside nodes are required, pick them in the same sequence. Operation 2: If midside nodes are required, pick the midside nodes on the edges linking the bottom face to the top face, going anti clockwise around the element centroid, starting on the edge linking to the first node. Operation 3: Pick Nodes sequentially around the perimeter of the bottom face, going in the same direction around the element centroid, starting on the corner nearest the first picked node. If midside nodes are required, pick them in the same sequence. If a pyramid element is required, pick only one node, then pick the first node again.

Note:- When creating Solid elements by nodal picks, only 8 Noded Bricks, 20 Noded Bricks, 4 noded Triangular Pyramids and 10 Noded Triangular Pyramid elements can be created.

The pick settings do not specify whether a rectangular element or triangular element is to be created. This is done by the sequence of nodes picked.

Examples:-
To create a linear rectangular shell element, pick the four corner nodes, as below:-

The node pick sequence would be 1,2,3,4.

To create a parabolic rectangular shell element, pick the 8 nodes below:-

The node pick sequence would be $1,2,3,4,5,6,7,8$

To create a linear triangular element, pick on the first node after picking the final node.

The node pick sequence would be 1,2,3,1.
To create a parabolic triangular element, pick on the first node after picking the final node.

The node pick sequence would be 1,2,3,4,5,6,1.
To create a linear rectangular Brick Element, pick the nodes in the sequence shown below:-

The node pick sequence is given by the node numbers.

To create a parabolic rectangular Brick Element, pick the nodes in the sequence shown below:-

The node pick sequence is given by the node numbers.
To create a linear 4 noded pyramid element, pick the nodes in the sequence shown.

The node pick sequence is $1,2,3,4,1$.
To create a parabolic 10 noded pyramid element, pick the nodes in the sequence shown.

The node pick sequence is $1,2,3,4,5,6,7,8,9,10,1$.
'FE Model| Elements| Add| Settings'
Opens a window to specify the element settings for the next element created with 'FE Model| Elements| Add| Pick Nodes'. Pick the element type, material, property and whether the element is linear or parabolic.

'FE Model| Elements| Delete'
 'FE Model| Elements| Delete| All'

Delete all Elements not referenced by pressures.
'FE Model| Elements| Delete| Selected'
Delete all selected Elements not referenced by pressures.
'FE Model| Elements| Select'
'FE Model| Elements| Select| All'
Select all Elements.

'FE Model| Elements| Select| None'

Deselect all Elements.
'FE Model| Elements| Select| Range'
Select a range of Elements. Typed input of the range is necessary in the command line.

'FE Model| Elements| Select| Invert Selection'

Invert the selection of Elements. All Elements that are initially invisible are made visible as they are selected.
'FE Model| Elements| Select| by Material'
Select Elements dependant on a range of material numbers. Selection of the element material range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'FE Model| Elements| Select| by Property'

Select Elements dependant on a range of property numbers. Selection of the element property range is necessary, from a list of options. This is carried out in a dialogue window as below:-

'FE Model| Elements| Select| by Element Type'

Select Elements with element type number in range. Selection of the element type range is necessary, from a list of options. This is carried out in a dialogue window as below:-

The element type number is from the list below:-
Type Description
1 2D Plane Stress Element
2 2D Plane Stress Element
3 Axisymmetric Solid Element
4 3D Thick Solid Element
5 3D Thick Shell Element
7 3D Laminated Solid
9 3D Hybrid Solid
10 3D Membrane
11 3D Tapered Beam
12 3D Beam Element
13 2D Beam Element
14
15
17
18
20
21
22
25
26 3D Spar Element 2D Spar 3D Translational Spring 2D Translational Spring 3D General Shell 3D Torsional Spring 2D Torsional Spring 2D Mass 3D Mass 2D General Mass 3D General Mass 2D Mass and Inertia 3D Mass and Inertia 3D Laminated Composite 3D Laminated Sandwich (Honeycomb)
Axisymmetric Solid with Non-Axisymmetric Loading
36 Axisymmetric shell
38 3D General Spring
39 3D General Beam

40	3D Thin Shell
41	3D Mixed Interpolation 8 Node General Shell
42	2D or Axisymmetric Gap
43	3D Gap
45	3D Cable
46	3D Straight Pipe
47	3D Elbow
48	3D Translational Damper
49	2D Gap/Friction
50	3D Gap/Friction
104	3D Solid for Heat Transfer
105	3D Thick Shell for Heat Transfer
112	3D Bar for Heat Transfer
120	3D Thin Shell for Heat Transfer
149	3D Convection Link for Heat Transfer
150	3D Radiation Link for Heat Transfer

'FE Model| Elements| Select| by NSRL'

Select Elements with NSRL number in range. The NSRL of the elements to be erased is selected from a list of Serial Numbers generated for the current model. The selection list may be similar to the list below:-

'FE Model| Elements| Select| by NORDR'

Select Elements with Node Order number in range. Selection of the Node Order is from a list as below:-

Select Element Node Order (NORDR)			
Available NORDRs		SelectedNORDRs	
[01] 2 Noded A xisummerric Shells. (01) 4 Noded Shells/Axisymmetric Solid (01) 8 Noded Solids (01) Point/ Line elements. (02) 20 Noded Solids (02) 3 Noded Axisymmetric Shells. (02) 8 Noded Shells. (10) 3 Noded Shells. (10) 6 Noded Prism Solids. (11) 15 Noded Prism Solids. (11) 6 Noded Shells. (12) 8 Noded Solids (20) 4 Noded Triangular Pyramid Solids. (21) 10 Noded Triangular Pyramid Solids (30) 5 Noded Rectangular Pyramid Solic (31) 13 Noded Rectangular Pyramid Sol			
OK		Cancel	Help

[^5]'FE Model| Elements| Select| by Formulation'
Select Elements with formulation number in range. Selection of the formulation range is necessary from a selection list, as below:-

Formulation is as below:-

1	Linear
2	Parabolic
3	Cubic
4	Mixed

'FE Model| Elements| Select| Selected Nodes'
Select Elements by association with selected Nodes.
'FE Model| Elements| Select| Selected Rigid Links'
Select Elements by association with selected Rigid Links.
'FE Model| Elements| Select| Select by Group Name'
Opens a dialogue window to choose the element group name to select.
'FE Model| Elements| Select| Deselect by Group Name'
Opens a dialogue window to choose the element group name to deselect.

'FE Model| Elements| Modify'

'FE Model| Elements| Modify| Separate'
The currently selected elements are separated from the rest of the model by adding nodes at the boundary between the selected elements and the unselected elements. In effect it is an 'Unmerge' function. This is not a hugely useful function for FE analysis, however on rendering packages it can important to have crisp edges, and element separation can force rendering packages that use surface smoothing to retain the crisp edge where normally it would be smoothed away.

'FE Model| Elements| Modify| Slice'

The currently selected elements are cut along a plane that is entered interactively using snaps or typed locations from the command line. At the time of writing the command reference the element slice only works with linear formulation shell elements. It is planned that sometime line elements will be added. One day solid elements may also be added. It
is not expected that parabolic formulation elements will ever be added to this function (too difficult to cover all possible options - each edge in an element could be cut up to twice leading to a dreadful multiplicity of possible meshing shapes).

If you have a parabolic formulation shell element, convert it to a linear element, slice it, then convert it back to a parabolic element.
'FE Model| Elements| Modify| Order: Linear to Parabolic'
Convert the currently selected linear formulation shell or solid elements to parabolic formulation. Remember to merge nodes after this operation as midside nodes are NOT merged automatically.

'FE Model| Elements| Modify| Order: Parabolic to Linear'

Convert the currently selected parabolic formulation shell or solid elements to linear formulation.

'FE Model| Elements| Modify| Reverse Normal'

Reverse the normals of the currently selected shell elements.
'FE Model| Elements| Modify| Shift Element Origin'
Shifts the origin of the selected elements one corner anti-clockwise about the normal of each currently selected shell element. This is shown below:-

This permits material orientations to be changed if they are oriented in the wrong axis.

'FE Model| Elements| Modify| Change Material Number'

Change the material number of the currently selected shell elements. Typed input of the material number is necessary in the command line.

'FE Model| Elements| Modify| Change Property Number'

Change the property number of the currently selected shell elements. Typed input of the property number is necessary in the command line.

'FE Model| Elements| Modify| Change Element Type'

Change the element type number of the currently selected elements. Line elements can only be converted to other line element types, and shell elements can only be converted to other shell element types. If there is a mixture of element types selected, the Modelling Studio aborts the function and asks the user to select only one element type. A typical dialogue box for the function is as below:-

'FE Model| Elements| Modify| Thicken Shell'

The selected first order shell elements (NORDR 1 or 10 only) are copied and offset in the opposite direction to the element normal and edge capping is added to close off the volume created. The user is required to type in the thickness.

'FE Model| Elements| Modify| Avoid Back Face Culling'

The selected shell elements are copied and an element with a normal in the opposite direction is created using the same nodes. This can be a quick \& dirty way of preventing some 3D packages making certain faces transparent due to back face culling.

'FE Model| Elements| Modify| De-Triangulate'

In the selected elements, detriangulate as many elements as possible. The function checks to see if any two triangular elements have a common long edge, and merge that edge to form a quadrilateral element. Only works with Element Type 20, Node Order 10 elements, turning them into Node Order 1 elements. Note: This function deletes the triangles. Texture mapping is preserved, but node normal directions are lost. If the operation is undone, the undeleted elements loose any texture mapping and node normal directions.

'FE Model| Elements| Inspect'

Starts the interactive element inspection routine. Click on an element centroid to ascertain information about the element.

'FE Model | Elements| Compact ID's'

Opens a dialogue box requesting the starting number and increment for the element number compaction of the selected elements. The dialogue box is the same as shown in 'FE Model| Nodes| CompactID's'.

'FE Model | Elements| Groups'

'FE Model | Elements| Groups| Group Controls'
Opens a dialogue box to add, rename, select and deselect element groups.

Double click on the group name to make it the current group. Right click on the group name to get a pop-up menu to rename the group.
'FE Model | Elements| Groups| Set Current Group'
Opens a dialogue box to set the current group.

'FE Model | Elements| Groups| Plot by Group Name' Opens a dialogue box to plot Groups by their name.

'FE Model | Elements| Groups| Erase by Group Name’
Opens a dialogue box to erase Groups by their name.

'FE Model | Elements| Groups| Select by Group Name'
Opens a dialogue box to select Groups by their name.

'FE Model | Elements| Groups| Deselect by Group Name'
Opens a dialogue box to deselect Groups by their name.

[r Deselect Group			$\square \square$	
Group Number	Group Name			\wedge
0	Group 0			
1	hip			
2	abdomen			
3	chest			v
OK		Deselect	Help	

'FE Model | Elements| Groups| Add to Current Group'
Adds the selected elements to the current group.

'FE Model | Elements | Find'

Find a range of elements. Typed input of the range is necessary in the command line. The elements will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

'FE Model| Rigid Links'

'FE Model| Rigid Links| Add'

'FE Model| Rigid Links| Add| Pick Master Node Location'
Adds a rigid link. The slave nodes are selected before choosing this menu option. The master node of the rigid link is picked by snap location or typed location in the command line. If a node is present at the pick point, it is used. Otherwise a new node is created at the pick point. The slave node degrees of freedom used are the ones defined by 'FE Model| Rigid Links| Add| Slave Node DOF'. It is up to the user to ensure that no node is the slave of more than one Rigid Link. There are checks to prevent duplicate slavery, but it's probable that inventive users will be able to circumvent the checks.
'FE Model| Rigid Links| Add| Slave Node DOF'
Opens a dialogue box to set the slave node degrees of freedom when the next Rigid Link is added. The dialogue box is as below:-

'FE Model| Rigid Links| Delete'
'FE Model| Rigid Links| Delete| All'
Delete all Rigid Links.

'FE Model| Rigid Links| Delete| Selected'
Delete all selected Rigid Links.
'FE Model | Rigid Links| Select'
'FE Model | Rigid Links| Select| All'
Select all Rigid Links.
'FE Model | Rigid Links| Select| None'
Deselect all Rigid Links.
'FE Model | Rigid Links| Select| Range'
Select a range of Rigid Links. Typed input of the range is necessary in the command line.
'FE Model | Rigid Links| Select| Invert Selection'
Invert the selection of Rigid Links. All Rigid Links that are initially invisible are made visible as they are selected.
'FE Model | Rigid Links| Select| Selected Nodes'
Select Rigid Links by association with selected Nodes.

'FE Model | Rigid Links| Select| Selected Elements'

Select Rigid Links by association with selected Elements.

'FE Model | Rigid Links| Inspect'

Starts the interactive Rigid Link Inspection routine. Pick the master node, and the rigid link information will be printed in the 'Progress Information' box.

'FE Model | Rigid Links| Compact ID's'

Opens a dialogue box requesting the starting number and increment for the rigid link number compaction of the selected rigid links. The dialogue box is the same as shown in 'FE Model| Nodes| CompactID's'.

'FE Model| Rigid Links| Change Slave DOF'

Opens a dialogue box to set the slave node degrees of freedom for the selected Rigid Links.
The dialogue box is as below:-

'FE Model | Rigid Links | Find'

Find a range of rigid links. Typed input of the range is necessary in the command line. The rigid links will be plotted on top of the current screen view with their labels temporarily turned on, and made visible if otherwise erased.

'FE Model| Analysis Title'

Opens a dialogue window where the titles of the model may be amended. For NISA users, a maximum of 6 lines may be entered, for MYSTRAN users a maximum of 2 lines may be entered.

'FE Model| Material'

'FE Model| Material| Add'

Open a dialogue window to add a new material. The dialogue window is as below:-

Material Number \& Name

The material number is the number referred to by the element material number. The name is an aide-memoir for the user and is not used anywhere.

Density
The density specified for the material in units of mass/unit volume.
Isotropic Material
This specifies whether the material is isotropic or not. If the material is isotropic EY/EZ etc are greyed out and automatically filled when the X direction or XY plane figure is amended.

Material Data

The material data entries are as below:-
E* Modulus of Elasticity (force per area eg $\mathrm{N} / \mathrm{mm}^{2}$). Note for NISA Users: With Honeycomb/ sandwich panels (element type 33) the material defining the foam/ honeycomb core MUST have EX = 0 .
G** Shear Modulus (force per area eg $\mathrm{N} / \mathrm{mm}^{2}$)
Nu** Poisson's ratio (unitless)
$\mathrm{F}^{*} \mathrm{~T} \quad$ Tensile strength (force per area eg $\mathrm{N} / \mathrm{mm}^{2}$)
$\mathrm{F}^{*} \mathrm{C} \quad$ Compressive strength (force per area eg $\mathrm{N} / \mathrm{mm}^{2}$)
FS** Shear strength (length per area eg N/mm²)
F※※ Principal axis shear strength (force per area eg N/mm²)
FS, FTS Shear strengths. (force per area eg N/mm²)
ALPA* Co-efficient of thermal expansion (per temperature rise eg $/{ }^{\circ} \mathrm{C}$)
$K^{*} \quad$ Thermal conductivity (heat flux per length eg W/m)
C Specific Heat (energy per mass eg J/kg)
Where

* Local element axis (X, Y or Z).
** Local element plane (XY, XZ or YZ plane).
※※ \quad Principal axis $(12,13,23)$.
Load From Library Button
Load a material from the library of existing materials. As below:-

Add Material To Library

Save a commonly used material to the library of existing materials.
'FE Model| Material| Delete'
Delete a range of material numbers. Selection of the range is required from a dialogue box.

'FE Model| Material| Delete All'

Delete all materials.

'FE Model| Material| Inspect'

Open a dialogue box similar to the 'FE Model| Material| Add' dialogue box, with the capability to scroll through the materials in the model as well as add and delete materials.

'FE Model| Material| Change Model Density'

Open a dialogue box to permit all material densities to be multiplied by a factor entered by the user. If a nonsense number is entered, the material density is multiplied by 1.0.

'FE Model| Laminations'

'FE Model| Laminations| Add'

Open a dialogue window to add a new Laminate. The dialogue window is as below:-

Laminate Number \& Name

The Laminate number is the number referred to by the element material number for elements of type 32 \& 33 (Laminate \& Sandwich elements). The name is an aide-memoir for the user and is not used anywhere.

Fibre Orientation

The 0° axis for the fibre orientation is defined here. The 0° axis is in element local axes or global axes.
If any of the following definitions are used, then the element must not be exactly in the plane formed by the two axes mentioned or the NISA analysis will abort without any indication partway through the stiffness calculation.

RH Rule about Global Z axis, starting at global X axis.
RH Rule about Global X axis, starting at global Y axis.
RH Rule about Global Y axis, starting at global Z axis.
If any of the following are used, then the element must not be exactly perpendicular to the specified global axis or the NISA analysis will abort without any indication partway through the stiffness calculation.

RH Rule about shell normal starting at projection of Global X axis on shell.
RH Rule about shell normal starting at projection of Global Y axis on shell.
RH Rule about shell normal starting at projection of Global Z axis on shell.
Problems caused by fibre orientations are very difficult to trace as NISA aborts without any message to indicate a problem. Get them right first time!

See the 'User Guide' on 'How to Create Laminates' for further advice.
Number of Layers
Use the up \& down arrows to change how many layers there are in the laminate. NISA can accept a maximum of 50 , though there is no such limitation for the Modelling Studio.

Layer Data
In the next section enter the property number for each layer in order to define the thickness of that layer. Also define the fibre orientation angle set, as each layer may be rotated relative to the 0° fibre orientation defined for the element. Finally, specify the material number for each layer.

Add Property/ Lamination Angle/ Material Buttons
The buttons enable the user to add properties, Lamination Angles or Materials without using the normal Menu commands of :-
'FE Model| Property| Add'
'FE Model| Lamination Angles| Add'
'FE Model| Material| Add'
Load From Library Button
Load a Laminations from the library of existing Laminations. As below:-
Open Laminate Definition File
Look in: \triangle Ancilliary Files
t ThickStuff.mlf

Note:- Each Laminate file contains the Property, Material and Angle data within the file so that a consistent laminate may be loaded regardless of existing properties.

Add Laminations To Library
Save a commonly used Laminations to the library of existing Laminations.

'FE Model| Laminations| Delete'

Delete a range of Laminations numbers. Selection of the range is required from a dialogue box.

'FE Model| Laminations| Delete All'

Delete all Laminations.

'FE Model| Laminations| Inspect'

Open a dialogue box similar to the 'FE Model| Laminations| Add' dialogue box, with the capability to scroll through the Laminations in the model as well as add and delete Laminations.

'FE Model| Lamination Angles'

'FE Model| Lamination Angles| Add'

Open a dialogue window to add a new Lamination Angle Set. The dialogue window is as
below:-

Angle Number \& Name

The Angle number is the number referred to by the Lamination data set for elements of type 32 \& 33 (Laminate \& Sandwich elements). The name is an aide-memoir for the user and is not used anywhere.

Number of Entries \& All the same
Use the up \& down arrows to change how many entries there are. There must be one for each node. If all the entries are the same, tick the 'All the Same' checkbox and only enter one piece of data

Angle Data

Specify the angle at each node.
Load From Library Button
Load a Lamination Angle set from the library of existing Lamination Angles. As below:-

Add Lamination Angle Set To Library

Save a commonly used Lamination Angles to the library of existing Lamination Angles.

'FE Model| Lamination Angles| Delete'

Delete a range of Lamination Angle set numbers. Selection of the range is required from a dialogue box.

'FE Model| Lamination Angles| Delete All'
Delete all Lamination Angles.

'FE Model| Lamination Angles| Inspect'

Open a dialogue box similar to the 'FE Model| Lamination Angles| Add' dialogue box, with the capability to scroll through the Lamination Angles in the model as well as add and delete Lamination Angles.

'FE Model| Properties'

'FE Model| Properties| Add'

Open a dialogue window to add a new Property Data Set. The dialogue window changes dependant on the type of property that is being specified.

For Shells the dialogue box is as below:-

Property Number \& Name

The property number is the number referred to by the Lamination data set for elements of type 32 \& 33 (Laminate \& Sandwich elements) or the 'Property' data of every element. The name is an aide-memoir for the user and is not used anywhere.

Number of Entries \& All the same

Use the up \& down arrows to change how many entries there are. There must be one for each node (unless using MYSTRAN, when only one thickness needs to be specified). If all the entries are the same, tick the 'All the Same' checkbox and only enter one piece of data

Thickness Data

Specify the thickness at each node.
Load From Library Button
Load a Properties set from the library of existing Properties. As below:-

Add Property Set To Library

Save a commonly used Property to the library of existing Properties.

For 3D Beam elements the properties are:-

Assume the following Local Axes for the beam
X along the length of the beam
Y across the beam
Z perpendicular to $X \& Y$ axes.
The properties to enter are:-
XSect Area Cross sectional area of beam in YZ plane.
lyy \quad Second Moment of area about Y axis.
Izz Second Moment of area about Z axis
J Torsional constant. If left blank = lyy + Izz
Ey \& Ez Offsets of beam centroid from line of element
Dy \& Dz
Depth of beam in $Y \& Z$ axes.
Alpha $Y \& Z \quad$ Shear co-efficients in $Y \& Z$ axes.
Solid Circular section $=1.1111$
Solid Rectangular Section $=1.2$
Circular Tube $=1.887$
Rectangular tube $=2.0$
I Beam = Total Area/ Web area
V1x,y,z Offset distances for end 1 of beam from the node that defines the beam.
V2x,y,z Offset distances for end 2 of beam from the node that defines the beam.
Okey, Theta/ X3, Y3 \& Z3
If Okey $=0$, then orientate the beam local $x y$ plane in the global Z direction (or global Y direction if vertical) plus angle theta about the element local x axis using the right hand rule. Y3 \& Z3 can be left blank.
If Okey $=1$, then $X 3, Y 3 \& Z 3$ define a third point on the element local xy plane.

SKey	Number of points on cross section to calculate stresses. May be 0 to 4.
TKey	Section type = 0 for solid or thick walled section $=1$ for thin walled open section $=2$ for thin walled closed section.

For each stress point used the following must be entered:-
YS $\quad Y$ co-ordinate of stress point
ZS Z co-ordinate of stress point.
TSF Torsional Shear Factor
$=0$ for solid or thick walled sections.
= wall thickness at stress point for thin open sections
$=1 /\left(2 A_{s} t\right)$ for thin closed sections. Where $A_{s}=$ area enclosed by wall centreline and $t=$ wall thickness at stress point
SBFY Shear bending factor about Y axis - NISA only - see NISA manual.
SBFZ Shear bending factor about Z axis - NISA only - see NISA manual.

For 2D Beam Elements:-

The properties to enter are:-

XSect Area Cross sectional area of beam in YZ plane. lyy Second Moment of area about Y axis. Shear Co-eff	
	Shear co-efficient. Solid Circular section $=1.1111$
	Solid Rectangular Section $=1.2$
	Circular Tube $=1.887$
	Rectangular tube $=2.0$
	I Beam $=$ Total Area/ Web area
Local Y Stress recovery Co-ordinate	

The properties to enter are:-
Spring Stiffness
Stiffness of the spring element

For 3D Translational Springs

The properties to enter are:-
Spring Stiffness
Stiffness of the spring element

For Torsional Springs

The properties to enter are:-
Spring Stiffness
Stiffness of the spring element

For 3D General Springs

The properties to enter are:-
Stiffness X, Y, Z

Torsion $X, Y, Z \quad$ Torsional Stiffness of the spring element about the $X, Y \& Z$ axes
V1, V2, V3 Spring axis if end nodes are co-incident [Don't do it! This is retained for NISA import compatibility]
ISYS Co-ordinate system to use for V1, V2 \& V3.
$=0$ for global Cartesian
$=1$ for LCS at element node 1 .
$=2$ for LCS at element node 2.
You are urged to leave this blank.

For Masses

The properties to enter are:-
Mass
Mass of the mass element referencing this property.

For 2D Mass \& Inertia elements. Only for NISA.

The properties to enter are:-

Mass X, Y
Inertia

Mass of the mass element referencing this property.
Rotational Inertia of the mass element.

For 3D Mass \& Inertia elements. Only for NISA.

The properties to enter are:-
Mass X, Y, Z
Mass of the mass element referencing this property.
Inertia X, Y, Z Rotational Inertia of the mass element.

For 2D General Mass elements. Only for NISA.

The properties to enter are:-
Mass X, Y
Mass of the mass element referencing this property.

For 3D General Mass elements. Only for NISA.

The properties to enter are:-
Mass X, Y, Z
Mass of the mass element referencing this property.

For 2D Gap elements.

The properties to enter are:-

Stiffness	Stiffness for rigid body motion $=0$ for gap elements Flex Co-eff
	$>0=$ tension only element Initial Gap compression only element
	The initial gap width. +ve $=$ initially open. $-\mathrm{ve}=$ initial interference. Note: opening is not defined by position of nodes.
Tolerance	Convergence tolerance on gap width Gap orientation from X axis.
Theta	

For 3D Gap elements.

The properties to enter are:-

Stiffness	Stiffness for rigid body motion $=0$ for gap elements Flex Co-eff $>0=$ tension only element <0 = compression only element
Initial Gap	The initial gap width. + ve $=$ initially open. - ve $=$ initial interference. Note: opening is not defined by position of
nodes.	
Tolerance	Convergence tolerance on gap width. $1 \mathrm{e}-8$ is a good default.

For 2D Spar elements.

The properties to enter are:-
XSect at Node 1,2 Cross sectional area of strut

For 3D Spar /Strut elements.

The properties to enter are:-
XSect at Node 1,2 Cross sectional area of strut
All remaining properties are for NISA only elements, and the user can look up the NISA manual for the property definitions.

'FE Model| Properties| Delete'

Delete a range of Property set numbers. Select range in a dialogue window.

'FE Model| Properties| Delete All'

Delete all Properties.

FE Model| Properties| Inspect'

Open a dialogue box similar to the 'FE Model| Properties| Add' dialogue box, with the capability to scroll through the Properties in the model as well as add and delete Properties.

'FE Model| Load Case'

'FE Model| Load Case | Add'

Open a dialogue window to add a new LoadCase Set. A load case will not be used in the analysis file if no Load Case set is defined. The dialogue window is as below:-

Load Case number
The load case number is the number referred to by all displacement constraints, pressures, nodal pressures, forces and accelerations that are applied to the model in this load case.

Load Case Title
The name of the load case. This name is passed through to the analysis package.
Calculate Element Strain Energy [applicable to NISA only]
When ticked, requires the strain energy to be calculated. When ticked, the Nodal Force unbalance threshold becomes active. Specify a suitable unbalance.

Stress Calculations

Specifies where stress calculations are carried out.

Stress Printout

Specifies what stress results are printed.

Averages Nodal Stress Printout

Specifies what averaged nodal stress results are printed.
Displacement Printout
Specifies what displacement results are printed.

Calculate Reaction Forces

Requires the analysis package to calculate reaction forces if ticked.
Calculate Element Centroidal Strain
Requires the analysis package to calculate Element Centroidal Strain if ticked.

Stress Free Temperature

Specifies the temperature at which the model is stress free.
'FE Model| Load Cases| Delete'
Delete a range of Load Case set numbers. Select range in a dialogue window:-

Note: this command does not delete any Displacement Constraints, Pressures, Nodal Pressures, Forces or Accelerations - these have to be deleted separately.

'FE Model| Load Cases| Delete All'

Delete all Load Case Sets. Note: this command does not delete any Displacement Constraints, Pressures, Nodal Pressures, Forces or Accelerations.

'FE Model| Load Cases| Inspect'

Open a dialogue box similar to the 'FE Model| Load Cases| Add' dialogue box, with the capability to scroll through the Load Cases in the model as well as add and delete Load Cases.

'FE Model| Load Cases| Auto Create'

Toggles the load case auto create setting. If a displacement constraint, pressure, nodal pressure, force or acceleration is added when 'FE Model| Load Cases| Auto Create' is checked, then a load case will be automatically added using the settings from 'FE Model| Load Cases| Auto Create Settings'

'FE Model| Load Cases| Auto Create Settings'

Opens a dialogue window to specify the load case settings to be used when a load case is automatically added. The dialogue box is as below:-

The Load Case Number and Title are blank as they will be filled automatically.

'FE Model| Displacement Constraints'

'FE Model| Displacement Constraints| Add'

Open a dialogue window to add new displacement constraints to the currently selected nodes.
A new load case set will be defined if the load case does not exist and 'FE Model| Load Cases|
Auto Create' is set. The dialogue window is as below:-

To set a constraint, either click the tickbox at the left or the appropriate segment of the hexagon. When a deflection value is non-zero, the segment is highlighted in a different colour (as below) - this is a useful visual flag for checking the model.

Where a displacement constraint already exists for a node for the specified load case, the displacement constraint is over-written.

'FE Model| Displacement Constraints| Delete' 'FE Model| Displacement Constraints| Delete| All'
 Delete all Displacement Constraints.

'FE Model| Displacement Constraints| Delete| Selected'
Delete all selected Displacement Constraints.

'FE Model| Displacement Constraints| Select' 'FE Model| Displacement Constraints| Select| All'

Select all Displacement Constraints. Any displacement constraints initially invisible will be made visible.
'FE Model| Displacement Constraints| Select| None'
Deselect all Displacement Constraints.

'FE Model| Displacement Constraints| Select| Invert Selection'

Invert the selection of all Displacement Constraints. Any displacement constraints initially invisible will be made visible.

'FE Model| Displacement Constraints| Select| by Load Case'

Select all displacement constraints in a range of load cases. Typed input of the range is necessary in the command line. Any displacement constraints initially invisible will be made visible.

'FE Model| Displacement Constraints| Select| by Node Number'

Select all displacement constraints applied to a range of node numbers. Typed input of the range is necessary in the command line. Any displacement constraints initially invisible will be made visible.
'FE Model| Displacement Constraints| Select| Selected Nodes'
Select all visible displacement constraints associated with the currently selected nodes.

'FE Model| Displacement Constraints| Select| Selected Elements'

Select all visible displacement constraints associated with the currently selected elements.

'FE Model| Displacement Constraints|Modify'

Replaces the displacement constraints on the selected nodes for the identified load case with those in the dialogue box.

If the node does not have an existing displacement constraint, the modify command will be ignored.

'FE Model| Displacement Constraints| Inspect'

Starts the interactive displacement constraints inspection routine. The mouse snaps to nodes with visible displacement constraints, and all the appropriate information is listed in the 'Progress Information' box.
'FE Model| Pressures'
'FE Model| Pressures| Add'
Open a dialogue window to add new Pressures to the currently selected elements. A new load case set will be defined if the load case does not exist and 'FE Model| Load Cases| Auto
Create' is set. The dialogue window is as below:-

Where a Pressure already exists for a face for the specified load case, the Pressure is overwritten. When elements other than shells are selected the Element Face selection combo box switches to a range of 1 to 6 for the face number. $(1=$ bottom, $2=$ top, $3=$ front, $4=$ right, $5=$ back \& $6=$ left).

'FE Model| Pressures| Delete'

'FE Model| Pressures| Delete| All'
Delete all Pressures.
'FE Model| Pressures| Delete| Selected'
Delete all selected Pressures.

'FE Model| Pressures| Select'

'FE Model| Pressures| Select| All'
Select all Pressures. Any Pressures initially invisible will be made visible.

'FE Model| Pressures| Select| None'

Deselect all Pressures.
'FE Model| Pressures| Select| Invert Selection'
Invert the selection of all Pressures. Any Pressures initially invisible will be made visible.
'FE Model| Pressures| Select| Range by Element Association'
Select all Pressures associated with selected elements.
'FE Model| Pressures| Select| Range by Face Association'
Select Pressures on a face associated with selected elements. Typed input of the face number is necessary in the command line.
'FE Model| Pressures| Select| by Load Case'
Select all Pressures within a range of Load Cases. Typed input of the range is necessary in the command line.
'FE Model| Pressures| Select| Selected Nodes'
Select all Pressures that are visible associated with the selected nodes.
'FE Model| Pressures| Select| Selected Elements'
Select all Pressures that are visible associated with the selected elements.
'FE Model| Pressures| Select| Zero Value'
Select all Pressures that have a pressure of zero.

'FE Model| Pressures| Inspect'

Starts the interactive Pressures inspection routine. The mouse snaps to element face centroids with visible Pressures, and all the appropriate information is listed in the 'Progress Information' box.
'FE Model| Nodal Pressures'
'FE Model| Nodal Pressures| Add'
Open a dialogue window to add new Nodal Pressures to the currently selected elements. A new
load case set will be defined if the load case does not exist and 'FE Model| Load Cases| Auto
Create' is set. The dialogue window is as below:-

Where a Nodal Pressure already exists for a node for the specified load case, the Nodal Pressure is added to. This function only works with shell elements that are not loaded parallel to the shell surface.

'FE Model| Nodal Pressures| Delete'

'FE Model| Nodal Pressures| Delete| All'
Delete all Nodal Pressures.
'FE Model| Nodal Pressures| Delete| Selected'
Delete all selected Nodal Pressures.

'FE Model| Nodal Pressures| Select'

'FE Model| Nodal Pressures| Select| All'
Select all Nodal Pressures. Any Nodal Pressures initially invisible will be made visible.
'FE Model| Nodal Pressures| Select| None'
Deselect all Nodal Pressures.
'FE Model| Nodal Pressures| Select| Invert Selection'
Invert the selection of all Nodal Pressures. Any Nodal Pressures initially invisible will be made visible.
'Selection| Nodal Pressures| by Load Case'
Select all Nodal Pressures within a range of Load Cases. Typed input of the range is necessary in the command line.

'Selection| Nodal Pressures| by Node Number'

Select all Nodal Pressures within a range of Node Numbers. Typed input of the range is necessary in the command line.
'FE Model| Nodal Pressures| Select| Selected Nodes'
Select all Nodal Pressures that are visible associated with the selected nodes.
'FE Model| Nodal Pressures| Select| Selected Elements'
Select all Nodal Pressures that are visible associated with the selected elements.
'FE Model| Nodal Pressures| Select| Zero Value'
Select all Nodal Pressures that have a load of zero.
'FE Model| Nodal Pressures| Inspect'
Starts the interactive Nodal Pressures inspection routine. The mouse snaps to nodes with visible Nodal Pressures, and all the appropriate information is listed in the 'Progress Information' box.

'FE Model| Forces'

'FE Model| Forces| Add'
Open a dialogue window to add new Forces to the currently selected nodes. A new load case set will be defined if the load case does not exist and 'FE Model| Load Cases| Auto Create' is set. The dialogue window is as below:-

Where a Force already exists for a node for the specified load case, the Force is added to.

'FE Model| Forces| Delete'

'FE Model| Forces| Delete| All'
Delete all Forces.
'FE Model| Forces| Delete| Selected'
Delete all selected Forces.

'FE Model| Forces| Select'

'FE Model| Forces| Select| All'
Select all Forces. Any Forces initially invisible will be made visible.
'FE Model| Forces| Select| None'
Deselect all Forces.
'FE Model| Forces| Select| Invert Selection'
Invert the selection of all Forces. Any Forces initially invisible will be made visible.

'Selection| Forces| by Load Case’

Select all Forces within a range of Load Cases. Typed input of the range is necessary in the command line.

'Selection| Forces| by Node Number'

Select all Forces within a range of Node Numbers. Typed input of the range is necessary in the command line.

'FE Model| Forces| Select| Selected Nodes'

Select all Forces that are visible associated with the selected nodes
'FE Model| Forces| Select| Selected Elements'
Select all Forces that are visible associated with the selected elements.
'FE Model| Forces| Select| Zero Value'
Select all Forces that have a load of zero.

'FE Model| Forces|Modify'

Replaces the forces on the selected nodes for the identified load case with those in the dialogue box.

If the node does not have an existing displacement constraint, the modify command will be ignored.

'FE Model| Forces| Inspect'

Starts the interactive Forces inspection routine. The mouse snaps to nodes with visible Forces, and all the appropriate information is listed in the 'Progress Information' box.

'FE Model| Accelerations'

'FE Model| Accelerations| Add'

Open a dialogue window to add a new Acceleration Set. The dialogue window is as below:-

Load Case Number

The Load Case number is the load case that the acceleration is associated with.
The remaining data entries are self explanatory.

'FE Model| Accelerations| Delete'

Delete a range of Acceleration set numbers. A dialogue window will open enabling selection of the accelerations to be deleted. The window may be as below:-

'FE Model| Accelerations| Delete All'
Delete all Accelerations.

'FE Model| Accelerations| Inspect'

Open a dialogue box similar to the 'FE Model| Accelerations| Add' dialogue box, with the capability to scroll through the Accelerations in the model as well as add and delete Accelerations.

'FE Model| Load Combiner'

The load combiner is a heavy duty tool that can combine many load sets into one. It is a one stop Load Case definition, Displacement Constraints/ Pressure/ Nodal Pressure/ Force/ Acceleration specification tool. The tool occurs in a dialogue window, as below:-

The top part of the window is identical to the dialogue window that opens with menu command 'FE
Model| Load Case | Add'.
The lower part of the window specifies already defined boundary conditions that may be multiplied by a factor to get the new load case. This is best shown by example.

Consider:-
Load case $1=1 \mathrm{~g}$ forwards.
Load case $2=1 \mathrm{~g}$ startboard
Load case $3=1 \mathrm{~g}$ up.

We wish to have a combination load case that is 9 g aft, 2 g port and 7 g down, using the displacement constraints specified in load case 2 . In load cases $1 \& 3$ part of the applied load is applied by a pressure force. There are no nodal pressures.

In the Displacements box, load set 2 would be multiplied by 1 .
In the Pressures box, load set 1 would be multiplied by -9. Press the 'Add Pressure Set' button once, then set 2 would be specified as 3 and multiplied by -7 .
In both the Forces and Accelerations box, multiply load set 1 by -9. Press the 'Add Force Set' and 'Add Acceleration Set' buttons twice, then fill in the additional set boxes as Set 2×-2 and Set $3 x-7$. If you make an error by pressing the 'Add *** Set' button too often, simply select load case 'None' for the load case and leave the multiplication factor as 1.

This ends up with a window looking like the one below:-

Once the＇OK＇button is pressed，the tool creates a new load case with all the individual displacement constraints，pressures，nodal pressures，forces and accelerations in the same way as if they had been created manually．The multiplication factors etc cannot be amended after ＇OK＇is pressed．

For another example of the load combiner，see the＇User Guide＇．

＇FE Model｜Analysis Readiness Check＇

The＇Analysis Readiness Check＇tool is another fairly heavy duty tool designed to ease the model verification burden．When the menu option is selected a window is opened and the readiness check results are printed into the window of the tool．A window similar to the one below is shown：－

IT Analysis Readiness Check
Analysis Readiness Check of D：Epsds655\GM5Lv．mdf
Executive Commands
PASSED Executive Command Check．

Nodes
Some Nodes are not connected to Elements or Rigid Links．Please Check．
Elements
PASSED Element Check．

Laminates
PASSED Laminate Check．

Load Cases
PASSED Load Case Check．
Conclusion
The model has FAlLED the Analysis Readiness Check

OK
Cancel

The checks performed come under five categories：－

Executive Commands

1）Checks to see whether the results file name has been defined．
2）Whether binary geometry files are saved．
3）Whether binary results files are saved．

Nodes

1）Checks to see whether there are any Nodes not used by any Elements or Rigid Links．
2）Checks if any nodes fall within the＇Node Merge＇Tolerance of each other．If they do，some nodes may need to be merged．

Elements

1）Checks to see whether all materials，properties and laminates called up by the elements are defined．
2）Checks whether any elements have duplicated nodes in their definitions（e．g．due to an excessive node merge tolerance）．

Laminates

1) Checks to see whether all materials, properties and laminate angles referenced by the laminate definitions exist.

Load Cases

1) Checks to see whether each load case is adequately restrained against rigid body motion this can get confused by many restrained nodes forming a hinge, but you wouldn't do that, would you?
2) Checks to see whether there is a load of some sort applied to the model for each load case.

Conclusion

The conclusion is based on the model having passed all the checks. It is NOT definitive. Please note:-

1) Models will run that fail the checks, but they are more likely to run correctly first time if they pass.
2) Models that pass the checks can still have problems. The checks do not include duplicate element checks or whether models comprise two or more separate sections of elements.
3) Failing the check will not prevent the export of the analysis file.

Right clicking over the readiness check results window will activate the right click menu - enabling you to copy the results text to the clipboard should you wish to.

3.2.7 Mapping Menu

The following menu commands may be found in the Mapping menu. Texture mapping is used to wrap pictures around computer models to enable them to look more realistic in rendering packages.

'Mapping| Add'

'Mapping| Add| Current View Mapping'

'Mapping| Add| Current View Mapping | All'
Opens a dialogue box to add a texture map to all the elements. The dialogue box is as below:-

The texture mapping on the elements is scaled to fit the current view, in the current proportions, into the rectangle specified in the dialogue box. If, however, the 'Stretch Map to Area', then the mapping will be stretched vertically or horizontally to fit the extents of the mapping area.

'Mapping| Add| Current View Mapping| Selected'

Opens a dialogue box to add a texture map to the selected elements.
The texture mapping on the elements is scaled to fit the current view, in the current proportions, into the rectangle specified in the dialogue box. If, however, the 'Stretch Map to Area', then the mapping will be stretched vertically or horizontally to fit the extents of the mapping area.

‘Mapping| Add| Box Mapping'

'Mapping| Add| Box Mapping| All'
Opens a dialogue box to add a texture map to all the elements. The dialogue box is as below:-

The mapping is by means of creating an imaginary box around the model. All faces are then projected onto the appropriate face of the box, with the face normal being the vector that decides which box face the element face projects onto. The imaginary box is then unwrapped
into area defined by the rectangle left,bottom,right,top while keeping all proportions consistent. All existing texturemapping is deleted and all existing texture nodes are deleted prior to box mapping taking place.

The imaginary box around the model is as shown below:

The view correspondence is:

Area 1:	Bottom
Area 2:	Right
Area 3:	Top
Area 4:	Left
Area 5:	Front
Area 6:	Back

The mapping is transformed on the texture map to the areas shown below:

Note: these areas are not fixed between one model and the next, and adjust in height and width to match the proportions of the model extents. The texture map wrapping has been chosen to be least inconvenient for packages that use the ' Y ' axis as the 'up' axis.
'Mapping| Add| Box Mapping| Selected'
Opens a dialogue box to add a texture map to all selected elements. The dialogue box is as below:-

The mapping is by means of creating an imaginary box around the selected model. All selected faces are then projected onto the appropriate face of the box, with the face normal being the vector that decides which box face the element face projects onto. The imaginary box is then unwrapped into area defined by the rectangle left,bottom,right,top while keeping all proportions consistent. All existing texturemapping is deleted on the selected faces. No existing texture nodes are deleted. It should be noted that the selected model is unlikely to have the same dimensions or proportions as the full model, so it is highly unlikely the the mapping of selected faces will match up with box mapping from the full model.

'Mapping| Delete’

'Mapping| Delete| All'
Delete all texture mapping.

'Mapping| Delete| Selected'

Delete texture mapping on selected elements.

'Mapping| Templates'

'Mapping| Templates| All Layers'
Opens a coloured texture template window to show the texture on all elements. Each layer has a different colour. As shown below with a figure ('Victoria 3' available from DAZ):

The template can be copied to the clipboard by right clicking over the template image area.

'Mapping| Templates| Single Layer'

Open a dialogue box to create a texture template of a single layer. The layer selection dialogue is as below:-

[r HodellerPlotTemplateLayerForm			$\square \square$	
Layer Number	Layer Name			人
0	Layer 0			
1	SkinHip			
2	SkinTorso			
3	PubicHair			v
OK		Plot	Help	

The resulting template is monochrome as there is no need to differentiate between layers:-

The template can be copied to the clipboard by right clicking over the template image area.

'Mapping| Templates| Set Size'

Opens a dialogue box to specify the size of the texture template.

The template is limited to 2000 pixels in any direction.

3.2.8 Window Menu

The following menu commands may be found in the Window menu.
'Window| Cascade'
Cascade different tools within the Modelling Studio program.
'Window| Tile Horizontal'
Tile different tools horizontally within the Modelling Studio program.

'Window| Tile Vertical'

Tile different tools vertically within the Modelling Studio program.

'Window| Next Window'

View the next tool in the Modelling Studio program.

'Window| Previous Window'

View the previous tool in the Modelling Studio program.
'Window| Arrange Icons'
Arrange Icons of minimised tools in the Modelling Studio program.

'Window| Maximise Window'

Maximise tool window in the Modelling Studio program.

'Window| Restore Window'

Restore tool window in the Modelling Studio program.

'Window| Minimise Window'

Minimise tool window in the Modelling Studio program.
'Window| Window List'
List of open tool windows in the Modelling Studio program.

3.2.9 Help Menu

The following menu commands may be found in the Help menu.

'Help| Help'

Opens the Modelling Studio program Help file. The help file has NO information regarding the Modelling Studio.
'Help| Modelling Studio Documentation'
Opens all three Modelling Studio Help files (the Quick Start Guide, Command Reference and User Guide) at the same time.

'Help| Help on Help'

Opens the Windows 'Help on Help' file if your operating system has one. Windows XP seems to deliberately misunderstand this API call.
'Help| Chestnut Pens Web Site'
Sends you off to the Chestnut Pens web site www.chestnutpens.co.uk

'Help| Technical Support'

Starts an e-mail to richard.williams@epslt.co.uk .
'Help| About'
Starts a window with an animated graphic giving information about EPS LTL.

3.2.10 Pop-up menu over model Viewport

The following menu commands may be found in the Pop-up menu over the model Viewport. Not all the commands are visible at the same time.

'End Command'

If carrying out an interactive command (eg 'FE Model| Node| Inspect') this menu item appears and can be used to stop the command.

'Copy Model Image'

Copies the image currently displayed of the model to the clipboard.

'Save Image'

Saves the model image to file.

'Save Image As'

Saves the model image to file, allowing the file name to be modified.

'View'

'View| Front'
View the front of the model, along the +Y axis.

'View| Back'

View the back of the model along the -Y axis.

'View| Left'

View the left side of the model along the $+X$ axis.

'View| Right'

View the right side of the model along the $-X$ axis.

'View| Top'

View the top of the model along the -Z axis.
'View| Bottom'
View the bottom of the model along the $+Z$ axis.

'View| Iso 1'

View the Iso 1 view of the model.
'View| Iso 2'
View the Iso 2 view of the model.
'View| Iso 3'
View the Iso 3 view of the model.
'View| Iso 4'
View the Iso 4 view of the model.
'View| User Defined'
Open a dialogue box to specify the viewing angle.

'Perspective'

'Perspective| None'
No perspective effects are applied to the model view in the Viewport. As shown below:-

'Perspective| Wide Angle Lens'

Strong perspective effects to simulate a wide angle lens are applied to the model view in the Viewport. As shown below, this is from the same angle of view as the zero perspective view above.

'Perspective| Standard Lens'

Medium strength perspective effects to simulate a standard lens are applied to the model view in the Viewport.

'Perspective| Telephoto Lens'

Mild perspective effects to simulate a telephoto lens are applied to the model view in the Viewport.

4. Interface Reference

4.1 General Information

This section identifies the active components on the Modelling Studio interface.

4.2 General Layout

The interface for the program is a little unusual and needs some explanation.

Generally when working you will be using the Viewport, Entity Selection tickboxes and the Modelling Toolbuttons. Typed data entry (if required) is through the Command Line. When more sophisticated model manipulation is necessary you will use the Menu Bar, where the work flow is from the top to the bottom down each menu and from left to right along the menu bar.

Now to explore the interface components in a little more detail.

4.3 View Manipulation

There are four parts to the view manipulation tool, as identified below:-

As you move the view, you will see the View Orientation axes change, as these remain pointing in the model X, Y and Z directions. The View Information indicates the current angle of view and zoom level. The zoom level is 1.00 when the currently visible model is scaled to fill the Viewport, smaller than 1.00 when zoomed out and larger than 1.00 when zoomed in.

Double click on the View Orientation or View Information to open a text entry View angle window, (as shown below) to enter a specific viewing angle.

4.4 Entity Selection

Many commands within the Chestnut Pens Modelling Studio work on selected entities. You select an entity (like a point, line or surface), and do something to it (copy, move, etc.). The selection process is done by:-

1) Decide which entities are to be selected in the entity selection tickbox area.
$\mathrm{P}=\mathrm{Points}$
$L=$ Lines
C = Curves (not implemented yet)
S = Surfaces
So = Solids (not implemented yet)
$N=$ Nodes
E = Elements
R = Rigid Links
DC = Displacement Constraints
F = Forces
P = Pressures
NP = Nodal Pressures

2) Drag a rectangle across the Viewport and release the mouse. The selected entities will be highlighted as shown below:-

4.5 Toolbuttons

Very few of the Toolbuttons are useful for the Modelling Studio. Most of them operate on the Progress Information box, which is of minor importance to the Modelling Studio. The majority of the buttons are covered in the help file.

The tool buttons that operate on the modeller are:-

Cut
Delete selected entities

Copy

Starts the entity copy routine to copy the selected entities. Pick a 'From' point and a 'To' point to define the translation.

Undo
Undo the last command. Look in the status bar for the command that will be undone, as, at the time of writing of this command reference, not all the commands have 'Undo' features that are implemented.

4.6 Modelling Toolbuttons

The Modelling Toolbuttons are as below:-

Not all the buttons are enabled all the time. If there are no points, then the 'Mesh Points' button is disabled etc.

Zoom Area

Zoom to a rectangular area dragged in the viewport.

Previous View

Return to the previous view in the zoom history list.

Zoom All

Zoom to the whole model.

Choose Viewing Angle

Opens the 'View| Angle' menu.

Redraw

Redraw the screen

Erase Selected Entities

Erases all the selected entities. No deletion occurs.

Change Snap Settings

See 4.7

Measure
Measure between two pick points on screen. The total distance and X, Y and Z components of the distance are specified.

Information

Inspect the entities picked on screen.

Add Point
Add points by snap location or co-ordinate entry.
Add Line
$\overline{\text { Add lines by snap location or co-ordinate entry. }}$
Add Surface
Add surfaces by picking lines or by typed line entry.
Add Node
Add nodes by snap location or co-ordinate entry.
Mesh Points
Start interactive point meshing routine. Points selected on screen are meshed with point elements according to the current 'Geometry| Mesh| Points| Mesh Settings'.

Mesh Lines
Start interactive line meshing routine. Lines selected on screen are meshed with line elements according to the current 'Geometry| Mesh| Lines| Mesh Settings'.

Mesh Surfaces
Start interactive surface meshing routine. Surfaces selected on screen are meshed with shell elements according to the current 'Geometry| Mesh| Surfaces| Mesh Settings'.

4.7 Snap Location

When manipulating the model, it is often useful to have the cursor snap to particular entities within the model. For instance a user may wish to draw a line from one node to another. The Snap Settings (via the Modelling Toolbuttons) would be set as below:-

Then the Line button would be pressed. As the cursor moves over the model, possible snap sites are highlighted, as shown below:-

The current Snap Location is shown, to enable the user to verify whether the program is choosing the correct end location for the line.

Ohat's AII Ғolks!

I'm sure I've forgotten something..

[^0]: ELEment,VISible,NONe
 Erase all elements
 RIGidlink,ERAse,ALL
 Erase all Rigid Links
 RIGidlink,ERAse,SELected
 Erase selected Rigid Links
 RIGidlink,ERAse,..range..
 Erase all Rigid Links in 'range'

 RIGidlink, PLOt,NONe
 Erase all rigid links
 RIGidlink,VISible,NONe
 Erase all rigid links
 NDISp,ERAse,ALL
 Erase all nodal displacements
 NDISp,ERAse,ASSociation,NODe
 Erase all nodal displacements associated with currently selected nodes. Any selected nodal displacements are deselected as they are erased.

 NDISp,ERAse,ASSociation, ELEment
 Erase all nodal displacements associated with currently selected elements. Any selected nodal displacements are deselected as they are erased.

 NDISp,ERAse,CASe,range
 Erase all nodal displacements with load case numbers within 'range'
 NDISp,ERAse,INDividual,nodenumber,casenumber
 Erase nodal displacement on node 'nodenumber' for load case 'casenumber'.
 NDISp,ERAse,NODe,range
 Erase all nodal displacements on nodes with nodenumbers within 'range'.
 NDISp,ERAse,SELected
 Erase selected nodal displacements
 NDISp, PLOt,NONe
 Erase all nodal displacements
 NDISp,VISible,NONe
 Erase all nodal displacements
 PRESsure,ERAse,ALL
 Erase all pressure forces
 PRESsure,ERAse,ASSociation,NODe
 Erase all pressures associated with currently selected nodes. Any selected pressures are deselected as they are erased.

 PRESsure,ERAse,ASSociation, ELEment
 Erase all pressure forces associated with currently selected elements. Any selected forces are deselected as they are erased.

[^1]: The Node Order is the node order of the element, and is defined as below:Node Order Description
 $1 \quad$ For all point or line elements
 $1 \quad$ For all 2 noded axisymmetric shell elements
 1 For all 4 noded shell elements/ 4 noded axisymmetric solid elements
 1 or 12 For all 8 noded solid elements
 $2 \quad$ For all 3 noded axisymmetric elements
 2 For all 8 noded shell elements
 2 For all 20 noded brick elements
 10 For 3 Noded triangular shell elements
 106 noded prism shaped brick elements
 116 Noded triangular shell elements
 $11 \quad 15$ noded prism brick elements
 204 noded triangular pyramid solid elements
 $21 \quad 10$ noded triangular pyramid solid elements
 $30 \quad 5$ noded rectangular pyramid elements
 $31 \quad 13$ noded rectangular pyramid elements

[^2]: 'View| Erase| Surfaces'
 'View| Erase| Surfaces| All'
 Erase all Surfaces.
 'View| Erase| Surfaces| Selected'
 Erase selected Surfaces.
 'View| Erase| Surfaces| Range'
 Erase Surfaces within range. Typed input of the range is necessary in the command line.
 'View| Erase| Surfaces| Selected Points'
 Erase Surfaces by association with selected Points.
 'View| Erase| Surfaces| Selected Lines'
 Erase Surfaces by association with selected Lines.
 'View| Erase| Surfaces| Selected Solids'
 Erase Surfaces by association with selected Solids.
 'View| Erase| Nodes'
 'View| Erase| Nodes| All'
 Erase all Nodes.
 'View| Erase| Nodes| Selected'
 Erase selected Nodes.
 'View| Erase| Nodes| Range'
 Erase Nodes within range. Typed input of the range is necessary in the command line.
 'View| Erase| Nodes| Selected Elements'
 Erase Nodes by association with selected Elements.
 'View| Erase| Nodes| Selected Rigid Links'
 Erase Nodes by association with selected Rigid Links.
 'View| Erase| Nodes| Selected Displacements'
 Erase Nodes by association with selected Displacement Constraints.
 'View| Erase| Nodes| Selected Pressures'
 Erase Nodes by association with selected Pressures.
 'View| Erase| Nodes| Selected Nodal Pressures'
 Erase Nodes by association with selected Nodal Pressures.
 'View| Erase| Nodes| Selected Forces'
 Erase Nodes by association with selected Forces.
 'View| Erase| Elements'
 'View| Erase| Elements| All'
 Erase all Elements.
 'View| Erase| Elements| Selected'
 Erase selected Elements.
 'View| Erase| Elements| Range'
 Erase Elements within range. Typed input of the range is necessary in the command line.

[^3]: The Node Order is the NISA node order of the element, and is defined as below:Node Order Description
 $1 \quad$ For all point or line elements
 1 For all 2 noded axisymmetric shell elements
 1 For all 4 noded shell elements/ 4 noded axisymmetric solid elements
 1 or 12 For all 8 noded solid elements
 $2 \quad$ For all 3 noded axisymmetric elements
 2 For all 8 noded shell elements
 2 For all 20 noded brick elements
 10 For 3 Noded triangular shell elements
 106 noded prism shaped brick elements
 116 Noded triangular shell elements
 $11 \quad 15$ noded prism brick elements
 204 noded triangular pyramid solid elements
 $21 \quad 10$ noded triangular pyramid solid elements
 $30 \quad 5$ noded rectangular pyramid elements
 $31 \quad 13$ noded rectangular pyramid elements

[^4]: 'View| Erase| Pressures| Range by Face Association'
 Erase Pressures by association with a range of element face numbers. Typed input of the element face number range is necessary in the command line.
 'View| Erase| Pressures| Range by Case Number'
 Erase Pressures by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
 'View| Erase| Pressures| Selected Nodes'
 Erase Pressures by association with selected Nodes.
 'View| Erase| Pressures| Selected Elements'
 Erase Pressures by association with selected Elements.
 'View| Erase| Nodal Pressures'
 'View| Erase| Nodal Pressures| All'
 Erase all Nodal Pressures.
 'View| Erase| Nodal Pressures| Selected'
 Erase selected Nodal Pressures.
 'View| Erase| Nodal Pressures| Range by Node Association'
 Erase Nodal Pressures by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
 'View| Erase| Nodal Pressures| Range by Case Number'
 Erase Nodal Pressures by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
 'View| Erase| Nodal Pressures| Selected Nodes'
 Erase Nodal Pressures by association with selected Nodes.
 'View| Erase| Nodal Pressures| Selected Elements'
 Erase Nodal Pressures by association with selected Elements.
 'View| Erase| Forces'
 'View| Erase| Forces| All'
 Erase all Forces.
 'View| Erase| Forces| Selected'
 Erase selected Forces.
 'View| Erase| Forces| Range by Node Association'
 Erase Forces by association with a range of node numbers. Typed input of the node number range is necessary in the command line.
 'View| Erase| Forces| Range by Case Number'
 Erase Forces by association with a range of load case numbers. Typed input of the load case number range is necessary in the command line.
 'View| Erase| Forces| Selected Nodes'
 Erase Forces by association with selected Nodes.
 'View| Erase| Forces| Selected Elements'
 Erase Forces by association with selected Elements.
 'View| Erase| Erase by Layer Name'
 Opens a dialogue box to select the layers to Erase.

[^5]: The Node Order is the node order of the element, and is defined as below:-
 Node Order Description
 $1 \quad$ For all point or line elements
 1 For all 2 noded axisymmetric shell elements
 1 For all 4 noded shell elements/ 4 noded axisymmetric solid elements
 1 or 12 For all 8 noded solid elements
 $2 \quad$ For all 3 noded axisymmetric elements
 2 For all 8 noded shell elements
 2 For all 20 noded brick elements
 10 For 3 Noded triangular shell elements
 106 noded prism shaped brick elements
 116 Noded triangular shell elements
 $11 \quad 15$ noded prism brick elements
 204 noded triangular pyramid solid elements
 $21 \quad 10$ noded triangular pyramid solid elements
 $30 \quad 5$ noded rectangular pyramid elements
 $31 \quad 13$ noded rectangular pyramid elements

